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1 Introduction

Over the last decades, advances in the field of machine learning affected

our everyday lives through new technology and gave rise to methods that

are nowadays commonly and succesfully used in scientific applications. The

way in which machine learning achieves its undeniable successes is a pecu-

liar one, for on the one hand, it shares with traditional statistics the use of

empirical observations to draw inferences, while on the other hand it shares

with computer science the design of algorithms that are not told in advance

how to solve a particular task (Wheeler 2016, p. 323). Clearly, this obser-

vation prompts a number of questions and perhaps the most urgent one, at

least from a methodological point of view, is the one concerning the rela-

tion between machine learning and classical statistics, the latter being the

philosophically well-scrutinized workhorse of any empirical discipline (see

Romeijn 2017 and references therein).

In the following, I intend to contribute to the analysis of this question.

Given the scope of this thesis and the breadth of the debate, the only fea-

sible way of doing so consists in focusing on one particular strand of it.

As far as methods of machine learning are concerned, I restrict my atten-

tion to artificial neural networks. On the one hand, this choice is mainly

motivated by the fact that most of the recent breakthroughs involving ma-

chine learning methods, ranging from advances in autonomous driving to

the detection of exoplanets, were achieved by employing artificial neural

networks (Buckner 2019, p. 1). Even the accomplishment that arguably

received most public attention, the triumph of AlphaGo in the strategic

board game Go over Lee Sedol, one of its strongest players, relied heavily

on the use of artificial neural networks (Silver et al. 2016). On the other

hand, and despite this astonishing track record, their internal functionality

and the way by which they learn from data is still not well understood and

remains essentially opaque even for machine learning researchers. This has

only recently sparked some interest in the philosophical aspects of artificial

neural networks (see e.g. Buckner 2018, Buckner 2019, Schubbach 2019).

The literature on the subject can, however, still be considered in its infancy

which is another reason for my focus on artificial neural networks within

this thesis.

Furthermore, I restrict the following discussion to one particular issue

discussed in the philosophy of statistics, namely the so-called reference

class problem. Introduced presumably in the nineteenth century by the
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mathematician John Venn, Hans Reichenbach provided the first rigorous

treatment of the problem by which he also established it in the philosoph-

ical discourse. Briefly put, the problem arises whenever one tries to infer

whether a single individual belongs to some target class and, in doing so,

one employs information regarding the frequency with which elements of

this class are among the elements of another class, the reference class, to

which the individual belongs. The difficulty in such situations is to find the

right reference class, for it is usually the case that an individual belongs to

more than one of them. At its heart, this is the reference class problem that

remains one of the greatest challenges classical statistics is faced with.

As a consequence, the question that I try to answer in this text is whether

artificial neural networks are, just as classical statistics, plagued by the ref-

erence class problem. If so, this would require an explanation for the contra-

dictory observation that the achievements of artificial neural networks were

not possible without a high predictive ability, that is, without the ability

to successfully generalize from past observations to new events. If, on the

contrary, it turns out that artificial neural networks are not subject to the

reference class problem, the reasons for this surprising finding would have

to be carved out in detail.

In fact, I will argue, artificial neural networks offer some remedy for the

reference class problem in a very specific class of situations, while falling prey

to it just as classical statistics in many others. I base my argumentation

on a thorough analysis of possible solutions to the reference class problem

that have been proposed in the literature. I consider the most promising

approaches of identifying the right reference class and relate them to arti-

ficial neural networks and their specific functionality. My main argument

centers around recent insights from machine learning research that reveal

a peculiar behavior of artificial neural networks which distinguishes them

from other methods of machine learning as well as from classical statistics.

This peculiar behavior that arises in situations involving what has become

publicly known as “big data”, I contend, allows artificial neural networks to

solve the reference class problem in precisely these situations. This, how-

ever, directly confines the argument to the aforementioned situations. For

this reason, admittedly, there are many other scenarios in which artificial

neural networks are of little help in solving the reference class problem, just

as classical statistics.
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Following the steps of the argumentation that I just mentioned, the re-

mainder of this text is organized as follows: In the second chapter, I analyze

the reference class problem and the philosophical debate that evolved from

it in detail. The third chapter is meant as an introduction to machine learn-

ing and artificial neural networks. First, I outline basic concepts of machine

learning; then, I move on to artificial neural networks and point out how

they differ from other methods of machine learning. Having provided the

relevant background in chapters two and three, I set out my argumentation

in chapter four by presenting three preliminary observations and drawing

a conclusion afterwards. I also indicate the inherent dialectic of my argu-

mentation by addressing several objections to it in the last part of chapter

four. In chapter five, I conclude with a brief summary and discuss possible

directions for future work on the topic.
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2 The Reference Class Problem

This chapter is concerned with the central philosophical issue that is treated

in this thesis: the reference class problem. In section 2.1, I show how it arises

naturally in instantiations of the statistical syllogism, a rule of inference that

is employed regularly in situations that involve probabilistic information.

Afterwards, in section 2.2, I take a look at the philosophical debate that

evolved from Reichenbach’s initial treatment of the reference class problem

and in particular at remedies that were proposed to solve it.

2.1 What Is the Problem?

Although most space in introductory textbooks on logic is devoted to de-

ductive reasoning that guarantees the truth of a given conclusion provided

the premises are true (Zoglauer 2016, p. 58), much of our actual reasoning

takes quite a different path. In fact, although often only implicitly, we em-

ploy a rule of inference that is discussed as the statistical syllogism in the

literature and takes the following general form:

1′. Most R are T.

2′. a is an R.

3′. a is a T.

Clearly, this argument does not license an inference from true premises

to a true conclusion with the same assurance as any rule of deductive in-

ference, since it replaces the universal quantifications of the form “all R

are T” that are characteristic for the premises of deductive arguments by

extenuated quantifications according to which only “some”, “few” or, in the

present example, “most R are T”. Consequently, the assurance about the

inference from the premises to the conclusion seems inherently linked to the

quantifier in front of the R in (1′).

Formalizing these ideas such that R and T are two arbitrary sets, the

quantifier in front of the R is replaced by a statement about the relative

frequency of elements of T among elements of R, freq(T |R), and the assur-

ance about the inference from the premises to the conclusion is interpreted

as the probability that the conclusion “a is a T” is true, P (a ∈ T ), yields

a precise formulation of the statistical syllogism that is, for example, pre-

sented in Thorn (2012, p. 301):
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(DI)

1∗. freq(T |R) = r

2∗. a ∈ R

3∗. P (a ∈ T ) = r

This form of inference, where “a conclusion about the probability of a

proposition” as in (3∗) is drawn “based on frequency information” as in

(1∗) is also known as a direct inference (Thorn 2012, p. 300).

Several aspects are worth mentioning about this formulation. First, ob-

serve that the frequency statement in the first premise, (1∗), ranges from

zero—“no R is T”—to one—“all R are T”—, which makes the formulation

flexible and widely applicable, for it nests various instantiations of the sta-

tistical syllogism.

Second, note that the conclusion, (3∗), is formulated in terms of a prob-

ability for some proposition being true. At this point, I do not intend to

enter the—vast—discourse on how the nature of this probability should be

interpreted properly, but rather, I would like to draw the attention to its

role within the entire argument (DI), for it is not as straightforward as it

might seem. To start, note that in (DI), the conclusion does not follow de-

ductively from the premises, for they “can at most create a presumption in

favor of the conclusion, and that presumption can be defeated by contrary

information” (Pollock 1990, p. 78). Thus, the statistical syllogism or the

direct inference, respectively, are rules of non-monotonic or defeasible rea-

soning in which the inference made only remains reasonable as long as no

contrary information is introduced via additional premises. Consequently,

some authors, like, for instance, McGrew (2001, p. 156) or Wallmann (2017,

p. 485), hold that the probability statement in (3∗) indicates the assurance

with which the conclusion, a ∈ T , follows from the premises. This view

is inspired by the informal presentation of the statistical syllogism above,

where, as we have seen, the assurance about the conclusion being true de-

pends on the quantifier in the first premise, (1′), that is replaced by the

frequency statement in the schema (DI). Thorn (2017, p. 2026) proposes

a similar interpretation, stating that given the evidence in (1∗) and (2∗),

it is rational for an agent to assign a probability of r to the proposition

a ∈ T being true. In the following, I adopt this interpretation of (3∗) but

also Thorn’s—at least in my opinion—concise notation, which is why in the

schema (DI), the conclusion contains a probability statement that concerns

the transition from the premises to the conclusion rather than this very
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conclusion itself.

Finally, there is a third peculiarity of the schema (DI) above: As we have

seen, its aim is to infer the probability—in the sense that I just discussed—

of some individual a being part of a set T that I denote by target class from

now on. To do so, it uses the relative frequency of elements of T among

another set R, that I denote by reference class from now on, as well as the

observation that a is an element of R. Now, however, the difficulty con-

sists in choosing the right reference class R, as it might be the case that

the individual a possesses several properties and hence belongs to several

plausible reference classes, R1, R2, . . . , among which the elements of T are

represented differently. To make this point concrete, consider the following

example presented by Thorn (2012, p. 300):

“For example, in the case regarding my neighbor’s dog, the conclu-
sion that the probability is 0.05 that Flint has fleas is based on my
frequency information about the set of dogs. But Flint is a member
of numerous reference classes (in addition to the set of dogs), such as
the set of smallbreed dogs, the set of dachshunds, the set of brown
dogs, etc., and direct inference based on frequency information for
the different reference classes may lead to mutually inconsistent con-
clusions.”

This difficulty of finding the right reference class as a basis for an infer-

ence in which one assigns a probability to a single case is called the reference

class problem. According to Hájek (2007, p. 564), the conceptual problem

originates in the nineteenth century, introduced by the mathematician John

Venn—inventor of the well-known set-theoretic diagrams—, who observes a

problem in assigning probabilities to individuals due to the fact that “every

individual thing or event has an indefinite number of properties or attributes

observable in it, and might therefore be considered as belonging to an in-

definite number of different classes of things” (Venn 1876, as cited in Hájek

2007, p. 564).

Subsequently, Reichenbach (1949) was the first to provide a thorough

treatment of the problem and to introduce it into the philosophical dis-

course. Just as Venn did before, Reichenbach (1949, p. 374) observes that

“[i]f we are asked to find the probability holding for an individual
future event, we must first incorporate the case in a suitable reference
class. An individual thing or event may be incorporated in many
reference classes, from which different probabilities will result. This
ambiguity has been called the problem of the reference class.”

Unlike Venn, however, Reichenbach does not close his investigation at

this point but instead proposes a way to solve the problem, that I examine
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in the next section.

Reichenbach’s work sparked a dynamic discourse that resulted in an ex-

tensive literature concerning the reference class problem, its implications as

well as possible remedies. During this process, the treatment of the prob-

lem has gradually become more fine-grained. For instance, Fetzer (1977, p.

185) argues that the problem of the single case, that is, the reference class

problem, has to be approached from two different perspectives, one being

“the problem of (single case) prediction”, the other being “the problem of

(single case) explanation” (ibid.). While the former is about “selecting ap-

propriate reference classes for predicting singular occurences” (ibid.), the

latter is about the same selection with the purpose of “explaining singular

occurences” (ibid.). Since Reichenbach, according to Fetzer, focuses on the

problem of predicting single cases and most of the literature follows him in

the statement of the problem, I focus on this case, in which one is inter-

ested in predicting or inferring the probability of an individual case, as well.

Another important distinction in the treatment of the reference class

problem is drawn by Hájek (2007). Just as Fetzer, he argues that in fact

there are two different reference class problems, namely a metaphysical and

an epistemological one (Hájek 2007, p. 565). According to Hájek, the for-

mer, metaphysical reference class problem “concerns what probabilities are

’out there’ ” (ibid.) as there should exist some fact or objective truth about

the nature of the probability of an individual thing or event. The episte-

mological reference class problem, on the contrary, arises from the fact that

a rational agent can only assign exactly one probability to a single case

which begs the question as to “which probabilities form appropriate bases

for our inductive inferences” and should ultimately “serve us as guides to

life” (ibid.). The intuition behind this reasoning is straightforward: When-

ever we are confronted with a situation that involves frequency information,

this information is confined to one or several particular reference class(es)

and, all of a sudden, we find ourselves in the midst of the reference class

problem while being forced to make a decision. Perhaps, before letting Flint

move in, Flint’s owners were pondering on which dog breed to get based on

the criterion of their susceptibility to fleas. Given that they had information

on the frequency of fleas among all dogs, smallbreed dogs, and dachshunds,

they had to decide based on which information and hence, depending on

which reference class, they would like to make their final decision. Granted,

in this example, for reasons I will discuss in the context of possible reme-

dies to the reference class problem below, the right reference class seems
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to be obvious. However, the example nevertheless illustrates that the ref-

erence class problem in its epistemological flavor comprises an inherently

decision-theoretic component: As human beings, we are—at least for most

of the time—agents to whom life not merely happens, but who act based on

decisions. Yet, without committing ourselves to one reference class when

dealing with frequency information, which amounts to some kind of a “meta-

decision” for frequency information conditional on a specific reference class

and against competing information that is conditional on other reference

classes, any subsequent decision-making becomes infeasible. Consequently,

solutions to the reference class problem that find and justify the reference

class we should commit ourselves to are desperately needed. I investigate

existing proposals in the following section.

2.2 Are there Solutions?

Since the reference class problem is central to any reasoning that follows

the schema (DI) of direct inference, it is of foremost importance for many

instances of human reasoning and, even more generally, for any situation

in which statistical evidence is used to draw inferences. This is bad news,

especially for the empirical sciences where methods of classical statistics are

the sole means available to grasp reality at least partly (Poser 2012, p. 55).

Consequently, much effort has been put into the quest for an appropriate

solution of the problem and indeed, there exist several approaches in the

literature that claim to find one—yet they are convincing to a varying de-

gree. In a nutshell, any solution to the reference class problem needs to find

an answer to the following question: How to choose the right reference class

R in a schema like (DI)? This sounds very much like a decision-theoretic

problem and in fact, as we shall see shortly, there are authors who put for-

ward arguments for choosing the right reference class that are motivated

by decision theory. Before going into the details, however, note that any

solution to the reference class problem needs to consist of two essential in-

gredients, a strategy for choosing the right reference class and at least one

normative criterion that justifies the strategy at hand as well as the fact

that the reference class it chooses is really the right one.

The first proposal of a solution is due to Reichenbach (1949). Only few

lines after the passage cited above, in which he introduces the reference

class problem, he proposes that in order to deal with the problem, “[w]e

then proceed by considering the narrowest class for which reliable statistics

can be compiled” (Reichenbach 1949, p. 374). Intuitively, this makes sense.
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Recall Flint, the neighbor’s dachshund, for which we would like to find out

the probability that he has fleas. Now suppose, that we are “only able to

make reliable judgments about the frequency of dogs having fleas and about

the frequency of dachshunds having fleas” (Thorn 2012, p. 300). Clearly, in

this situation, we “should apply the latter frequency judgment in forming

a belief about the probability that Flint, a dachshund, has fleas” (ibid.),

because every dachshund belongs to the class “dogs”, making the class

“dachshunds” the narrowest reference class “for which reliable statistics

can be compiled” as required by Reichenbach. Another indication for the

intuitive appeal of Reichenbach’s proposal might be found in the fact that

several authors concur with it. A. J. Ayer (1963, as cited in Gillies 2000, p.

816), for instance, confirms the view of Reichenbach when he writes that

“[t]he rule is that in order to estimate the probability that a partic-
ular individual possesses a given property, we are to choose as our
class of reference, among those to which the individual belongs, the
narrowest class in which the property occurs with an extrapolable
frequency.”

Note, however, that although Ayer replaces the term “reliable statistics”

by “extrapolable frequency”, the meaning of the latter concepts as well

as that of “narrow” in the context of competing reference classes remains

rather vague in Reichenbach’s approach. Thus, apart from being intuitive

prima facie, Reichenbach’s approach faces several conceptual difficulties.

While some authors, like Hájek (2007, p. 568), criticize and even reject the

approach for precisely these reasons, others try to formalize it in order to

make the concepts involved more precise and to save Reichenbach’s proposal

at least from the attacks I just mentioned.

Thorn (2012), for instance, belongs to the latter group of authors. He

introduces two principles that are meant to capture Reichenbach’s theory,

the first being the principle of direct inference (DI) that we have already

seen above, the second being the so-called subset defeat, which states the

conditions under which a direct inference “based on frequency information

for a given reference class, is defeated in virtue of frequency information

for a subset of that reference class” (Thorn 2012, pp. 300). It takes the

following form:

(SD)

(i) a ∈ R′,

(ii) R′ ⊆ R, and

(iii) freq(T |R′) 6= r
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In the formulation (SD), Reichenbach’s idea of the narrowest reference

class is made precise by the subset relation in (ii), which states that some

reference class R′ is a subset of another reference class R. Furthermore, it

clarifies in which cases an instantiation of (DI) is defeated and the narrower

reference class should be chosen; namely, whenever there is reliable fre-

quency information regarding the narrower reference class that contradicts

the information for the broader one. Let me return to Flint, the dachshund,

to illuminate this point: As seen above, Flint, a, is both an element of the

set of dogs, R, and the set of dachshunds, R′. Now, assume we possess

reliable information that every twentieth dog has fleas, freq(T |R) = 0.05.

Given this information, we might infer by (DI) that the probability of Flint,

a dog, having fleas is P (a ∈ T ) = 0.05. Next, assume we get to know that

every fortieth dachshund has fleas, that is, freq(T |R′) = 0.025. Following

Reichenbach, we should go with the narrower reference class, “dachshunds”,

and additionally, the initial direct inference would be defeated by an in-

stance of (SD), since all conditions (i) to (iii) would be fulfilled, resulting in

the new inference that P (a ∈ T ) = 0.025. Finally, let us take Reichenbach

at his words and consider the narrowest possible reference class, the single-

ton containing Flint only. Obviously, the relative frequency of elements of

T among the singleton containing Flint will always be zero or one, since, for

instance, Flint either has fleas or not. This, however, is not really insightful,

for “all interesting instances of direct inference would be defeated”, which

is why the situation is considered “a paradigmatic example of the problem

of Uninformative Statistics” (Thorn 2012, p. 303).

Thus, although the schema (SD) formalizes Reichenbach’s ideas in a con-

cise way and defines the narrowest reference class in terms of the subset

relation, a first shortcoming is easily identified. Next, we have to return to

Hájek (2007) and its criticism of Reichenbach’s solution, since he mentions a

further issue concerning the concept of the “narrowest reference class”, that

remains problematic even when it is formalized in terms of the subset rela-

tion. It arises when trying to compare the narrowness of different reference

classes that overlap only partly, since, as Hájek (2007, p. 568) observes,

reference classes cannot “be totally ordered according to their narrowness”.

For instance, in the case of Flint, who belongs to the class of dogs as well as

to the class of dachshunds, it was straightforward to identify the narrowest

reference class according to the subset relation. Now, however, consider a

situation in which there are only reliable statistics regarding the frequency

of fleas affection among mammals that weigh less than ten kilograms and

regarding the frequency of fleas affection among brown mammals. How to
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proceed in this situation to infer the probability of Flint, a brown mammal

of less than ten kilograms, having fleas? Obviously, each of the classes is

narrower than the class of all mammals, but there is no reliable information

as to which of them should be considered as the narrowest reference class.

Furthermore, it would be a mistake to judge them as equally narrow, since

“the mere fact that they each refine that class through the application of

one further predicate [. . . ] is by itself no reason” (Hájek 2007, p. 569) to

do so.

In addition to his criticism of the notion of “narrowness”, Hájek (2007)

stresses that the concept of “reliable statistics” is not made precise by Re-

ichenbach. Indeed, it still remains unclear within the formulation (SD)

for it only presupposes that there is some frequency information without

specifying it any further. By means of two observations, Hájek (2007, p.

568) reveals this conceptual weakness: First, he argues that “reliable” is a

vague concept per se that cannot be pinned down employing ideas of clas-

sical statistics such as a sufficiently large sample size or unbiasedness, let

alone only one of them. Second, and even worse, the notion of a “reliable

statistic” might in fact be context-dependent and “sensitive to pragmatic

considerations such as the weighing of utilities” (Hájek 2007, p. 568). This

point, that once more stresses the pronounced decision-theoretic character

of the reference class problem, becomes intuitively obvious once we compare

a situation in which “the formation of white dwarves” (ibid.) is investigated

to one in which “the safety of a new drug” (ibid.) is tested. In the former

situation, one could imagine that much emphasis is put on accuracy in sci-

entific theorizing. Therefore, a scientist might gather all evidence available,

ending up with a large amount of properties associated with each white

dwarf and a very narrow reference class which leads to an inference in the

schema (DI) that is both very specific and relatively robust to subset defeat.

On the contrary, in the latter situation, in which the safety of a new drug

is tested, a high risk for human lives is involved and, consequently, most

emphasis is likely put on its minimization. In this context, it might be a

bad idea to choose a very narrow reference class, for it would restrict the

investigation to individuals with a specific combination of characteristics

while excluding others whose susceptibility to side-effects of the drug will

remain unknown.

Hájek’s analysis casts serious doubt on Reichenbach’s solution to the ref-

erence class problem and the question as to whether it consists of a norma-

tive ideal that states what is the right reference class as well as a decision
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strategy that is sufficient to actually choose it. What then, if any, is his own

proposal? Recall, that he distinguishes a metaphysical and an epistemolog-

ical reference class problem which he approaches separately. For the first

one, that is concerned with the probabilities as they are “out there”, Hájek

(2007, p. 582) suggests that “rather than try to solve the reference class

problem” we should “dissolve it”. How does he reach this surprising conclu-

sion? According to Hájek (2007, p. 580), whenever “we seek unconditional,

single-case probabilities we keep finding conditional probabilities instead”,

that is, all probabilities that exist are in fact reference class-dependent and

hence conditional rather than unconditional probabilities.1 Consequently,

following this line of argumentation, it is impossible and even inconceivable

to come up with a solution to the metaphysical reference class problem,

for the basic probabilities “out there” are always conditional ones at heart.

Unfortunately, after this insight, Hájek does not proceed by solving the

epistemological reference class problem, but rather, he acknowledges that

it still remains an open question which probabilities “should underpin our

inductive reasonings and decisions” (Hájek 2007, p. 583). I will focus

on this latter problem for the rest of this text, leaving aside the question

whether Hájek is right about the metaphysical reference class problem and

the claim that conditional probabilities form the proper basis of probability

theory. For now, a final remark regarding Hájek’s article seems appropri-

ate: Albeit reaching a rather negative conclusion, the author achieves two

objectives from which the entire debate benefits greatly. First, he clearly

reveals the shortcomings of Reichenbach’s initial proposal, thereby guiding

later work towards these aspects that require further refinement. Second,

he shows—by an argumentation that is beyond the scope of this text—that

all interpretations of probability fall prey to the reference class problem.

The importance of this result cannot be overestimated as it implies that

there is no escape from the reference class problem by simply arguing that

it arises from the frequentist interpretation of probability put forward by

Venn and Reichenbach. As a consequence, the result invalidates all solu-

tions to the reference class problem that rely on a different interpretation of

probability and, furthermore, it licences a certain degree of inattentiveness

regarding the definition and interpretation of the frequency and probability

statements in schema (DI) above.

1 Indeed, Hájek (2007) goes beyond the reference class problem and argues that condi-
tional instead of unconditional probabilities should be regarded as the “proper primi-
tive of probability theory”, that builds conditional from unconditional probabilities in
Kolmogorov’s axiomatization until now.
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As for the refinements of Reichenbach’s proposal, the contributions of

Thorn (2017) and Wallmann (2017) have to be mentioned, since they for-

malize the reference class problem and approaches towards its solution even

further than Thorn (2012), thereby particularly addressing criticism of the

vague concepts “narrow” and “reliable”. Thorn (2017), for instance, is the

first to justify the recommendation to choose the narrowest reference class

using a clear normative criterion. To do so, he makes use of decision theory

and puts forward an epistemic utility argument that is summarized con-

cisely in Wallmann (2017, pp. 489). It proceeds as follows: An agent’s

goal in choosing the right reference class for a direct inference such as (DI)

is to maximize epistemic accuracy, that is, to achieve the lowest possible

difference between the inferred probability P (a ∈ T ) and the true value.

Thorn (2017, p. 2029) employs so-called “proper scoring rules” to mea-

sure epistemic accuracy and shows, that accuracy is maximized if and only

if frequency information for the narrowest reference class—in terms of the

subset relation—is used in the direct inference.2 A straightforward way to

trace Thorn’s use of proper scoring rules, taken by Wallmann (2017, pp.

489), is to consider a situation in which there is an individual, a, along

with a conjunction of all properties it is known to have, Sc. Now, according

to the schema (DI), all other individuals d1, . . . , dn that possess the same

properties Sc should be assigned the same probability P (di ∈ T ) = vi = v.

In a next step, the truth value of the proposition di ∈ T is defined as

V (di ∈ T ) ∈ {0, 1} and epistemic inaccuracy is measured by the average

squared difference between predicted values, v, and true values, V (di ∈ T ),

as follows:

S =
1

n

n∑
i=1

(v − V (di ∈ T ))2 (1)

This expression—as well as all proper scoring rules—then is minimized

if and only if v = freq(T |Sc) (ibid.). Thus, as stated above, inferring the

probability P (di ∈ T ) in line with frequency information for the narrowest

reference class maximizes epistemic accuracy.

Interestingly, this result even holds for cases in which the “conflict of

narrowness and precision” (Wallmann 2017, p. 485) arises—cases, in which

the frequency information for the narrowest reference class is not precise,

while there is precise frequency information for a broader one. From a sta-

2 A formal definition of proper scoring rules and several hints to the literature on the
topic are provided in Thorn (2017, p. 2029).
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tistical point of view, this is a very intuitive situation, since narrower ref-

erence classes have less members than broader ones, resulting in estimated

frequency information that is based on a smaller sample and thus, by sim-

ple statistical arguments, less precise. Thorn (2017, Theorem 3), however,

shows that according to the normative guideline of maximizing accuracy,

one should still choose the narrowest reference class along with “statements

of expected frequency” which are “the proper statistical premises for di-

rect inference” (Thorn 2017, p. 2034). The schema (DI) introduced above

would take on the following form in the case of imprecise information for

the narrower reference class, assuming for the moment that R′ ⊆ R is the

narrowest reference class:

(DIexp)

1∗. E[freq(T |R′)] = r

2∗. a ∈ R′

3∗. P (a ∈ T ) = r

Here, E denotes the operator for the expected value that is applied to the

imprecise frequency information for class R′ and that replaces the known

frequency information in the initial schema (DI). Clearly, the next question

must concern the calculation of this expected frequency. Thorn (2017, p.

2034) proposes to do so by computing “probability weighted averages of

frequencies” of the following form:

E[freq(T |R′)] =
n∑

i=1

vi × P (freq(T |R′) = vi) (2)

Here, the vi are meant to reflect the imprecise frequency information for

the reference class R′ in the sense that freq(T |R′) = v1∨ · · · ∨ freq(T |R′) =

vn. The weights P (freq(T |R′) = vi) are the probabilities that freq(T |R′) has

value vi, which Thorn arrives at via another application of schema (DI),

a “meta direct inference” (Wallmann 2017, pp. 491) involving “relative

frequencies in arbitrary subsets of the broader reference class” (Wallmann

2017, pp. 493), that is, by considering freq(T |S) where S ⊆ R.3

As we have seen, Thorn (2017) provides a considerable refinement of

Reichenbach’s theory, first by defining a norm—epistemic accuracy—that

justifies choosing the narrowest reference class, second by developing a deci-

sion rule—maximizing epistemic accuracy—to actually identify and choose

3 Wallmann (2017, pp. 490) provides a comprehensive yet accessible presentation of
the entire and rather cumbersome procedure that is beyond the scope of the present
discussion.
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this reference class and third, finally, by developing a method to deal with

instantiations of (DIexp) in which the frequency information used in a direct

inference is of statistical nature, as is the case in many real-world contexts.4

Acknowledging the first and second of Thorn’s contributions, Wallmann

(2017) suggests to improve the third aspect, that is, the computation of ex-

pected frequencies. The argument proceeds from the observation that the

weights P (freq(T |R′) = vi) in (2) are inaccurate, since they are obtained

from arbitrary subsets S ⊆ R which causes them to cluster around the

value of freq(T |R) (Wallmann 2017, p. 491). To obtain accurate weights,

p∗i , one should consider exceptional subsets in the sense that they exhibit a

probabilistic dependence with the target class T instead of arbitrary ones.

Wallmann (2017, p. 496) then calls “distributions that describe how fre-

quencies in sub-reference classes [. . . ] are distributed natural distributions”

and thus, at least for him, the reference class problem boils down to finding

these natural distributions, for they allow an agent to compute the expected

frequency for the narrowest reference class which in turn yields the maxi-

mum accuracy when inferring a single-case probability such as P (a ∈ T ) in

schema (DIexp).

There cannot be any doubt that we have come a long way, tracing the

proposed solutions to the reference class problem starting with Reichenbach

and then, very much in a cone-like movement, reaching the contemporary

debate. As far as I can see, the contributions by Thorn (2012, 2017, 2019)

and Wallmann (2017) provide the most elaborate account of Reichenbach’s

initial ideas, since they are able to dispel much of the criticism concern-

ing the precise meaning of “narrow” and “reliable”. Granted, one might

question whether the definition of accuracy in terms of proper scoring rules

as used by the authors I just mentioned is the appropriate one and—with

Hájek in mind—whether accuracy is the appropriate normative criterion

altogether. But given one accepts this stipulation, the attention should be

directed towards the identification of natural distributions for the narrowest

reference class available when searching for a remedy to the reference class

problem.

4 Additionally, Thorn (2012) addresses the problem of uninformative statistics that is
related to the singleton reference class and proposes a remedy to tackle the case of
partly overlapping reference classes in Thorn (2019).
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3 Machine Learning and Artificial Neural Networks

While the previous chapter was concerned with setting the stage for the

philosophical considerations in this thesis, the present one deals with ma-

chine learning and artificial neural networks. Since the latter require at least

a basic understanding of machine learning, section 3.1 is meant to serve as

a short introduction to this topic, in which I outline the most important

general principles by which it is governed. Then, in section 3.2, I zoom

in on the machine learning methodology that is of primary interest for the

following argumentation, that is, on artificial neural networks. In particu-

lar, I describe their functionality and show which characteristics make them

stand out as peculiar against other machine learning methods.

3.1 What Is Machine Learning All About?

When confronted with the field of machine learning and the question what

it is all about for the first time, one straightforward approach—especially

for the philosopher—might consist in a conceptual analysis: What is learn-

ing, or, at least, what does it mean in the present context? And what

does it mean to insinuate that the process of learning is performed by a

machine? The latter question can be answered by observing that the term

“machine” serves to qualify the domain of the subject, in the sense that it

“does not study the process of learning in living organisms” (von Luxburg

and Schölkopf 2011, p. 651). Instead, the focus is on “automated learning”

performed by machines, namely by computers (Shalev-Shwartz and Ben-

David 2016, p. 19). Consequently, the former question can be rephrased

by asking what kind of learning it is that a computer performs. More

or less detailed answers can be found in the machine learning literature

that nonetheless converge on the main aspects: First, that learning must

be conceived of as a process in which, second, “general rules” are inferred

“by observing examples” (von Luxburg and Schölkopf 2011, p. 651) or, put

differently, “experience” is converted “into expertise or knowledge” (Shalev-

Shwartz and Ben-David 2016, p. 19). There is no doubt that concepts such

as “observation”, “experience” or “knowledge” are of foremost philosophi-

cal importance on their own—in fact, entire branches of philosophy analyze

them as their objects of investigation—, yet I would like to refrain from this

kind of discussion and instead mention a further, more detailed definition

of learning that is presented in one of the standard textbooks of machine

learning (Mitchell 1997, as cited in Goodfellow et al. 2016, p. 97):
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“A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P , if its perfor-
mance at tasks in T , as measured by P , improves with experience
E.”

Once more, the understanding of learning as a process is—at least implicitly—

stated by mentioning the improvement that a learning computer program

exhibits over time. Furthermore, experience plays a central role, just as in

the aforementioned definitions. Finally—and here is where the definition

goes beyond those that were mentioned above—, learning seems to depend

highly on the given context as it is only defined relative to some perfor-

mance measure and some specific task. Overall, the definition provides an

ideal stepping stone to get more precise and explore the concepts involved

in greater detail.

3.1.1 Basic Concepts

Let us start with the first component brought up in the definition and in-

vestigate the nature of the experience that is central to machine learning.

Very briefly, experience in the context of machine learning equates to a

dataset, since this serves as the input to any learning computer program

or algorithm (Goodfellow et al. 2016, pp. 97). A dataset is best under-

stood as a collection of several examples or observations each of which in

turn consists of several features that have been obtained from some object

or event (ibid.). A common and concise way of capturing a dataset is by

means of a design matrix. This is a matrix X that contains the observations

in the dataset as its rows and that has one column for each feature (ibid.).

Following a notation that is used commonly in the literature, I will denote

the number of observations—also known as the sample size—by n and the

number of features—also known as the dimension of the data—by d, such

that each observation is a vector xi ∈ Rd and for the design matrix it holds

that X ∈ Rn×d with elements xi,j, i = 1, . . . , n, j = 1, . . . , d.

Note, that at first blush, this conception of representing objects in a dataset

seems rather restrictive: How, if at all, should we deal with objects like texts

or images that are not numbers and thus cannot be readily captured in a

design matrix? Fortunately, there are ways to circumvent this constraint by

defining the features in the dataset in a clever way. For example, images can

be represented such that each pixel corresponds to one feature containing

a numeric value for the color, either measured as an intensity or according

to the CMYK/RGB color models (Hastie et al. 2009, p. 4). Texts, on the

other hand, are commonly represented such that each feature corresponds

to a certain word, counting the number of its occurences within the text.
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Clearly, this means that the number of features d in a dataset might be high,

in some cases even very high such that d � n. This issue is discussed un-

der the headline of high-dimensional data in the literature and it will come

up again in the discussion below. For the moment, note that the features

included in a dataset are somehow related to properties or characteristics

associated with the objects or events that constitute the observations in

the dataset and might consequently provide a link to the analysis of the

reference class problem above.

An important distinction in machine learning that is linked directly to the

kind of experience from which a computer is allowed to learn is that between

supervised and unsupervised machine learning (see e.g. Shalev-Shwartz and

Ben-David 2016, pp. 22). While the design matrix is all there is in the

unsupervised case, it is complemented with a vector y ∈ Rn of labels or

targets associated with each observation in the supervised case. The focus

will be on the latter type of machine learning in the following and often,

I will refer to the design matrix plus the vector of labels rather loosely as

“the data”. A central assumption that distinguishes machine learning from

classical statistics then concerns the generation of the data: While classical

statistics usually presupposes a specific underlying probability distribution

from which the data was sampled in order to derive the properties of esti-

mators or hypothesis tests, machine learning only acknowledges that some

probability distribution generated the data without specifying it any fur-

ther.5 Additionally, it is assumed that some unknown and correct labeling

function f that is “out there” relates each observation to its corresponding

label in the way that f : Rd → R, xi 7→ f(xi) = yi (Shalev-Shwartz and

Ben-David 2016, p. 34).

Before proceeding by carving out the specific tasks tackled by methods

of machine learning, let me illustrate the preceding discussion with an ex-

ample. To do so, recall Flint, the dachshund, and suppose that we are

interested in compiling a dataset that consists of information regarding six

features, namely age, breed, coat type, color, weight, and height for Flint

and all other dogs in the neighborhood as well as a binary label indicat-

ing whether a given dog has fleas or not. Assuming there are 12 dogs in

the neighborhood—Flint included—that are ordered alphabetically in the

dataset, we would end up with a design matrix X ∈ R12×6 in which, for

5 The only assumption commonly applied is that each observation is sampled from the
identical yet unknown probability distribution and independently of all other observa-
tions, which is why it is called iid (independent and identically distributed) assumption
(von Luxburg and Schölkopf 2011, p. 653).
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instance, the first element in the first row, x1,1, would give the age of the

dog that is ordered first. Similarly, the first element of the target vector

y ∈ R12, y1, would indicate whether the dog that is ordered first has fleas

or not.

The next question one might feel inclined to ask concerns the “class of

tasks” mentioned in the definition above that is performed by a learning

machine: What is the goal of machine learning and how does it incorporate

experience, that is, the data, in order to achieve it? First, and perhaps

surprisingly, the process of learning itself is neither the task nor the goal

of machine learning, but rather the “means of attaining the ability to per-

form the task” (Goodfellow et al. 2016, p. 97). Thus, keeping in mind

the idea introduced above that machine learning is about inferring general

rules from experience, we are in a position to discern the task of machine

learning from other aspects that were already discussed: By now we know

that experience enters a machine learning algorithm as input in the form of

a dataset and furthermore, we know that the process of learning converts

this input into a general rule, the output of the machine learning algorithm.

Consequently, the task of machine learning is to come up with a general

rule that is obtained from existing observations and that is able to gen-

eralize “to previously unseen, new examples” (von Luxburg and Schölkopf

2011, p. 651). Obviously, this must sound familiar to the philosopher and

indeed, machine learning can be considered as an instantiation of inductive

inference, a property that it shares with classical statistics. However, un-

like in classical statistics, the focus of machine learning is not on statistical

generalization, that is, on drawing a conclusion about some underlying pop-

ulation based on a limited yet representative sample, but, on the contrary,

on predicting the label for a new and previously unseen observation (Hastie

et al. 2009, p. 1). Now, to accomplish this task of predicting new labels, the

general rule a machine learning method seeks to infer from the data is the

labeling function introduced above, since it constitutes the true mechanism

that links the observations with their corresponding labels. The output of

a learning algorithm therefore consists of a prediction rule h that also maps

an observation to a label and that tries to come as close as possible to the

true labeling function. In a next step, that will complete the close reading

of the definition from above, we will have to discuss the precise meaning of

“as close as possible”, an issue that concerns the “performance measure”

mentioned in the definition and that will ultimately reveal how the predic-

tion rule is inferred from the data.
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However, before doing so, I would like to emphasize another important

distinction in machine learning, this time related to the type of task that is

performed by a learning algorithm: On the one hand, one refers to the task

performed by an algorithm as classification when the labels associated with

the input data are not real numbers, but specify which of k distinct cate-

gories each observations belongs to. In this case, the true labeling function

is given by f : Rd → {1, . . . , k} and the machine learning or classification

algorithm tries to infer a prediction rule h that is defined accordingly. On

the other hand, cases in which the labels are real numbers and the inferred

prediction rule consequently has the form h : Rd → R are referred to as re-

gression (Goodfellow et al. 2016, pp. 98). For instance, applying a machine

learning algorithm to the example from above would be a special case of

classification, namely binary classification, since the labels associated with

the observations in the dataset can take on two different values, “dog has

fleas”, which might be encoded as “1”, and “dog has no fleas”, which might

be encoded as “0”. In this case, the output of a machine learning algorithm

would be a rule h : R6 → {0, 1} that predicts whether a dog not included in

the data has fleas, once it is supplied with information about its age, breed,

coat type, color, weight, and height as input.

After discussing the kind of experience that serves as an input to machine

learning algorithms and the type of tasks they accomplish, we now have to

investigate the performance measures used to assess the specific degree of

this accomplishment. As already mentioned, the goal of machine learning

is to come up with a general rule that is able to predict future labels and

mimics the true underlying labeling function as close as possible. Thus, a

straightforward way to measure the performance of an algorithm consists in

considering the differences between its predictions and actual observations.

This idea is captured by the concept of a loss function that reports the

“cost” associated with a wrong prediction. For instance, in a classification

task as presented in the example above, a straightforward loss function is the

so-called 0-1-loss: misclassifying observation xi as h(xi) when its true label

is f(xi) = yi yields a loss of one, while a correct classification h(xi) = yi

yields a loss of zero (von Luxburg and Schölkopf 2011, p. 654):

`(xi, yi, h(xi)) :=

1 if h(xi) 6= yi

0 otherwise
, i = 1, . . . , n (3)
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Note, however, that in general, it is not straightforward to come up with

a loss function that exactly matches the task at hand and “that corresponds

well to the desired behavior of the system” (Goodfellow et al. 2016, p. 102).

Consequently, the choice of an adequate loss function usually requires care-

ful consideration.

At this point, one might wonder how the value of a loss function can be

computed in practice, given that we are ultimately interested in the perfor-

mance of a prediction rule on data that it has not seen before. To this end,

a simple yet elegant workaround has been developed in the literature: The

overall dataset available is split into one part the machine learning algo-

rithm is allowed to access, the training set, and one part that the algorithm

cannot access and that is solely used to measure its performance on unseen

data, the test set (ibid.).

Finally, one might be interested in comparing the performance of two dif-

ferent prediction rules, say h1 and h2. To this end, the risk of a prediction

rule h, Rn(h), is defined as the average loss over a sample of n observations,

Rn(h) :=
1

n

n∑
i=1

`(xi, yi, h(xi)), (4)

where as before, xi ∈ Rd is an observation consisting of d features, yi ∈ R
is the corresponding label and h(xi) is the label predicted by prediction

rule h (von Luxburg and Schölkopf 2011, p. 654). In this setting, we would

clearly prefer prediction rule h1 to its competitor h2 if its risk is smaller,

that is, if Rn(h1) < Rn(h2).

The last observation also hints towards an answer to the question as to

how a machine learning algorithm infers a prediction rule from the data: by

following the decision rule to output the prediction rule with the smallest

risk. This notion is formalized within the framework of empirical risk min-

imization (ERM) that is of foremost importance in machine learning and

that I will investigate in greater detail in the following section.

3.1.2 Empirical Risk Minimization and its Philosophical

Ramifications

The ERM framework embodies a straightforward decision rule to infer pre-

dictors from data that is already summarized in its title: An algorithm ought

to choose the prediction rule h for which the empirical risk or training error,

that is, the risk that can be computed from the training set accessible to the

algorithm, is minimized (Shalev-Shwartz and Ben-David 2016, p. 35). In-
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tuitively, this makes sense, for the training set is the window through which

an algorithm “sees” the world and it seems reasonable to infer a prediction

rule that performs well on this part of it.

Any chosen prediction rule h should furthermore exhibit considerable pre-

dictive ability in the sense that in addition to minimizing the training error,

the test error is small as well. Thus in sum, “[t]he factors determining how

well a machine learning algorithm will perform are its ability to (1) [m]ake

the training error small” and “(2) [m]ake the gap between training and test

error small” (Goodfellow et al. 2016, p. 109). Two central challenges in

machine learning can be related directly to these factors, namely underfit-

ting and overfitting. Underfitting occurs, when a prediction rule is not able

to achieve a sufficiently low training error and hence lacks fit to the data.

Overfitting, on the other hand, occurs when a prediction rule achieves a very

close fit to the data and, consequently, a very low training error (ibid.). Al-

though this might seem beneficial prima facie, a closer look reveals that

a near-perfect fit to the data makes a prediction rule rather inflexible to

correctly predict new labels, resulting in a large gap between training and

test error. Beyond the purely methodological literature in machine learning

and statistics, the problem of over- and underfitting has also attracted the

attention of philosophers. For instance, though in the context of scientific

theories and their fit with the evidence, Hitchcock and Sober (2004, p. 3)

refer to overfitting the data as a “methodological sin [. . . ] because it un-

dermines the goal of predictive accuracy.” Thus, whenever the chosen goal

is predictive accuracy, overfitting the evidence, that is, the existing data,

should be avoided. Of course, one might question the goal of predictive

accuracy in the first place, especially in the case of scientific theorizing that

is discussed by Hitchcock and Sober (2004). In the case of machine learn-

ing, however, we are after prediction rules, so it seems reasonable to take

predictive accuracy as their primary goal. As a consequence, the problem

of over- and underfitting becomes inescapable.

The standard way to balance under- and overfitting is to prespecify a

hypothesis class H from which the machine learning algorithm is allowed

to choose the prediction rule h, such that h ∈ H (Shalev-Shwartz and

Ben-David 2016, p. 36). The intuition is as follows: If we choose a suit-

able hypothesis class for some given problem, for instance based on prior

knowledge about the nature of the data, we might avoid underfitting due to

the fact that all prediction rules in that class will fit the data rather well.

Additionally, we might also avoid overfitting, since we actively restrict the
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algorithm’s possible outputs to the elements of that class, thereby excluding

prediction rules that allow a near-perfect fit to the data.6 As an example,

consider the case of a simple linear regression, a method that is commonly

applied, for instance, in the social sciences, and that can be conceived of as

a simplistic machine learning algorithm (Goodfellow et al. 2016, pp. 105):

Given a training set of data, X ∈ Rn×d, the goal of the algorithm is to find a

prediction rule, h : Rd → R, that minimizes the training error as measured

by the squared distances between the regression line and the observations,

a situation that is depicted for the case where n = 10 and d = 1 in figure 1.

However, since we are dealing with a linear regression, the hypothesis class

from which the algorithm is allowed to select a solution only consists of linear

functions mapping the observations, xi ∈ Rd, to their corresponding labels,

yi ∈ R, that is, we have H = {h : yi = xi,1w1 + · · · + xi,dwd, i = 1, . . . , n}.
As a consequence, overfitting will be prevented by the linear prediction rule

that the algorithm outputs, because it cannot perfectly fit the data as might

be the case with a high-degree polynomial. Still, underfitting will be pre-

vented as well given that there is some indication for a linear relationship

in the data that justifies the choice of the hypothesis class.

Figure 1: Example of a linear regression where the dimension of the data is d = 1 and
the sample size is n = 10 (Goodfellow et al. 2016, p. 107).

In general, it holds—informally at least—that the “larger” the hypothesis

class, the higher an algorithm’s capacity, that is, its ability to fit a variety of

different functions (Goodfellow et al. 2016, p. 110).7 As we have seen, there

is a close relationship between over- and underfitting as well as the hypoth-

6 Note, that a near-perfect fit to the data is enough for overfitting to occur, since “[r]eal
data are almost always noisy” and hence, prediction is “rarely, if ever, a matter of
achieving perfect fit to data” (Hitchcock and Sober 2004, p. 10).

7 The quotation marks are meant to indicate the informality of the statement, for the
capacity is linked only indirectly to the actual size of H as measured by the number
of its elements.
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esis class at hand and in fact, it is the capacity that links these concepts. A

concise overview over how this link arises is given in figure 2. As becomes

obvious, the training risk decreases with increasing capacity of the hypoth-

esis class, such that at some point, underfitting can be overcome. In fact,

there is a “sweet spot” at which fit to the training data and susceptibility

to overfitting are in balance.

Figure 2: Curves for training risk (dashed line) and test risk (solid line) depicting the re-
lationship between overfitting, underfitting, and the capacity of the hypothesis
class H (Belkin et al. 2019, p. 15850).

Yet, beyond that “sweet spot”, the fit to the training data is just too close

and a successful prediction of unseen labels turns infeasible, giving rise to

a high test error and, in particular, a large gap between training and test

error that corresponds to overfitting. I will bring up this topic again in the

discussion below, since, as it turns out, artificial neural networks behave

rather peculiarly against this background.

Before, I would like to pause for a moment and hint at some further issues

mentioned in the preceding analysis that are of genuine philosophical impor-

tance. First, and beyond the aforementioned fact that the process of learn-

ing from experience makes machine learning an instantiation of inductive

inference, several authors, philosophers and machine learning researchers

alike, have pointed out that an algorithm’s selection of some prediction rule

from a predefined hypothesis class can be interpreted as an application of

Popper’s idea of falsification.8 This is because the algorithm goes through

all functions, that is, through all hypotheses in the hypothesis class and

“falsifies” or rejects all those with a deficient fit to the data. At least in my

opinion, this makes machine learning an exciting object of investigation in

the context of philosophy of science, for it seems—and the literature appar-

ently supports this view—that two paradigms of scientific method, namely

the principle of induction and falsificationism coincide within its algorithms.

8 See Corfield et al. (2009) for a rigorous and concise treatment and Harman and Kulka-
rni (2007) for a book-length investigation.

24



Second, recall that as we have seen above, anyone applying machine learn-

ing methods needs to come up with a suitable loss function to measure

the method’s performance and, additionally, with a hypothesis class that

avoids overfitting as well as a computationally infeasible search across all

functions there are to come up with a prediction rule. These are inherently

normative questions, at least from an epistemological point of view, since

ultimately, they center on the issue as to whether one ought to prefer some

loss function and hypothesis class over others, perhaps because the former

license a higher credence in the algorithm’s predictions than the latter do.

In addition, the decisions the user of machine learning algorithms needs to

make reveal the relevance of human involvement, especially via prior knowl-

edge, for a process that is allegedly performed by a machine alone. In this

way, the behavior of algorithms is influenced or biased towards some specific

goal, be it the minimization of a particular loss function or the search of a

prediction rule among linear functions only. It is for this reason that human

decisions entering the machine learning process are referred to as inductive

bias in the literature (Shalev-Shwartz and Ben-David 2016, p. 37).

3.2 Artificial Neural Networks

The preceding analysis of central concepts in machine learning enables us

to approach artificial neural networks in a next step. Although they seem

to represent a relatively recent methodology, especially under the heading

of “deep learning”, their underlying idea dates back as far as to the 1940s,

according to the historical overview provided in Goodfellow et al. (2016, pp.

12).9 While artificial neural networks have always been loosely motivated by

“the behavior of neurons and synapses at some level of abstraction” (Buck-

ner 2019, p. 2)—hence their name—their recent surge in popularity mainly

stems from technological advances under the headline of “big data” that

permit the measurement and processing of ever-increasing amounts of data

(Goodfellow et al. 2016, pp. 18). In this context, for which artificial neural

networks are suited particularly well, a large number of characteristics can

be associated with each single object or event that constitutes one obser-

vation in the data (Goodfellow et al. 2016, pp. 12, 152). Consequently,

datasets used in machine learning applications nowadays often belong to

the setting of high-dimensional data that I briefly mentioned above, that

is, to a setting in which the number of characteristics associated with each

observation exceeds the overall number of observations. In light of our dis-

cussion of the reference class problem above, this is an interesting situation,

9 For an in-depth historical overview, Schmidhuber (2015) is an excellent reference.
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for the high number of characteristics might be linked to the concept of a

narrow reference class, while the comparatively low number of observations

might have implications for the reliability of statistics computed from them.

Before investigating these links in greater detail, I would like to outline the

basic functionality of artificial neural networks first.

3.2.1 Basic Functionality

The basic building-block of artificial neural networks is the perceptron, a

simplistic machine learning algorithm as depicted in figure 3. The per-

ceptron takes d features of an observation xi ∈ Rd as input. Then, it

computes a weighted sum of the inputs and their corresponding weights

wj, j = 1, . . . , d and, finally, outputs the value of a so-called activation

function that depends on the weighted sum of inputs. Consequently, the

weights indicate the strength of the relationship between input and output

(Harman and Kulkarni 2007, p. 79). The learning process of a perceptron

then proceeds as follows: First, the weights are initialized with random val-

ues. Next, the features of one observation are fed into the perceptron and

the resulting output is compared to the label that was observed in reality. If

the output corresponds to the true label, no change is made to the weights,

otherwise they are altered slightly and the next observation is input into the

perceptron. This procedure is repeated until the empirical risk cannot be

decreased any further and the collection of weights that achieves the lowest

risk is the prediction rule selected by the algorithm (ibid.).

Figure 3: Schematic representation of a perceptron with d inputs and corresponding
weights wj , j = 1, . . . , d (adapted from Harman and Kulkarni 2007, p. 78).

Note, that the hypothesis class defined by a perceptron is the same as

the one discussed above for the case of a linear regression, as the algorithm

chooses a prediction rule that is a linear function of the inputs in any case.

This fact and the corresponding inability of the perceptron to fit a variety

of data patterns was already noted by Minsky and Papert (1969) in an

example that has become a classic by now and is reproduced in Harman and

Kulkarni (2007, pp. 80) as well as in Goodfellow et al. (2016, pp. 167). It
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proceeds as follows: Consider the XOR function that applies the exclusive

“or” to observations consisting of two binary features, xi = (xi,1, xi,2)
′ ∈

{0, 1} × {0, 1}. Thus, the function returns the value “1” when exactly one

feature of an observation equals “1” and “0” otherwise. This XOR function

is the true labeling function f that we would like to learn from the data

using a perceptron. Now, assume we were able to compile a dataset of

four observations and two features that can serve as the training set for the

perceptron from which it can try to infer a prediction rule h that comes as

close as possible to the XOR function. As we have seen above, this dataset

can be represented in a (4× 2)-matrix as follows:

X =


0 0

0 1

1 0

1 1

 (5)

Furthermore, we can depict the observations and the corresponding labels

in a two-dimensional coordinate system as shown in figure 4. It is this figure

that reveals the problem that arises when trying to infer the XOR function

using a perceptron: No prediction rule that is a linear function can predict

the outputs of the XOR function correctly.

Figure 4: Depiction of data obtained from an application of the XOR function (Goodfel-
low et al. 2016, p. 169).

This drawback of the perceptron led machine learning researchers to build

more flexible algorithms by combining several perceptrons to so-called mul-

tilayer perceptrons, or, put differently: to artificial neural networks. Es-

sentially, the term “multilayer perceptron” already captures their entire

functionality, since it indicates that several perceptrons are combined to

multiple layers, the number of which is usually denoted by t = 1, . . . , T .

This is why an artificial neural network can be conceived of as a graph that

consists of a set of nodes, V , the neurons, and a set of edges, E, linking
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the output of one neuron to the input of another one by means of weights

as shown in figure 3 above (Shalev-Shwartz and Ben-David 2016, p. 269).

Within each neuron, the weighted sum of inputs is processed by the activa-

tion function and, subsequently, leaves the neuron as an input to the next

one. Two important terms in this context are a network’s depth and width,

the latter referring to the maximum number of neurons encountered across

all layers of the network, the former referring to the number T of layers in

the network.10 For instance, an artificial neural network with depth two and

width five is depicted in figure 5. Here, the ith neuron of the tth layer is

denoted by vt,i, V0 is the input layer that takes the data as its input and V2

is the output layer that produces the final output. The layer V1 is referred

to as “hidden layer”, since its outputs are only processed to the next layer

and never revealed to the user of the network (ibid.).

Figure 5: An example of an artificial neural network with depth two—the input layer is
not considered for the depth—and width five (Shalev-Shwartz and Ben-David
2016, p. 270).

Clearly, an artificial neural network nicely fits into the general framework

of machine learning introduced above. First, there is data that serves as

input to the first layer of the network. Next, the algorithm tries to come

up with a prediction rule producing outputs that match the actual labels

associated with the observations as close as possible. However, while the

process of finding a prediction rule was straightforward to describe in the

case of a single perceptron, it becomes increasingly cumbersome with every

layer that is added to an artificial neural network. Recall, that for the single

perceptron, the prespecified hypothesis class consists of linear functions and,

10 This is the origin of the term “deep learning”, since the strategy in this field is to
build networks with an enormous number of layers, that is, with a very high depth
(Goodfellow et al. 2016, p. 165).
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consequently, has a rather limited capacity. For artificial neural networks,

on the contrary, the prespecified hypothesis class consists of highly complex

functions that arise from the successive application of chained linear func-

tions: The input to v1,i arises from a linear function, its output is processed

by a linear function feeding it into v2,i and so on up until vT,i. Since it

is infeasible to specify the set of functions from which the algorithm is al-

lowed to choose the final prediction rule explicitly—as in the case of linear

functions—, one usually defines it implicitly by specifying an architecture

for the network, consisting of the number of edges and nodes as well as the

activation function at the nodes, which nevertheless “is not a trivial job”

(Schubbach 2019, p. 7). Then, the algorithm performs the learning process

similarly to the case of the single perceptron, that is, it chooses the weights

by minimizing the deviation between the network’s output and the actual

labels.

Apart from the mere description of the basic functionality of artificial neu-

ral networks, there is one aspect that cannot be stressed enough and that

has in fact already been subject to philosophical investigation in Schubbach

(2019): The higher the number of layers in a network, the more complex

and intransparent becomes the process by which the algorithm comes up

with its output, the final configuration of weights that represents the chosen

prediction rule. “Although we do get an output, we do neither know how

this output was computed nor why it is this output and no other” (Schub-

bach 2019, p. 8). Just considering the number of possible interactions of

weights across layers as well as the number of outputs within hidden lay-

ers that remain entirely obscure greatly supports this argumentation. And

there are further properties that make artificial neural networks stand out

as peculiar among methods of machine learning, both from a methodologi-

cal and a philosophical perspective. They are the subject of the subsequent

section.

3.2.2 What Makes Them Special?

Until now, we have seen that methods of machine learning are regularly

confronted with the problem of over- and underfitting, since their ultimate

goal is to learn a prediction rule from existing data that generalizes well to

new and unseen data in the sense that it achieves a high predictive accuracy.

An observation that has been made in recent machine learning research and

that has been confirmed repeatedly, however, is the following: Artificial

neural networks perform particularly well in the high-dimensional setting
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mentioned above, that is, “when the number of parameters [or features]

is significantly larger than the amount of training data” (Neyshabur et al.

2017, p. 5947). In this setting, they are able—and in practice deliberately

trained to—exactly fit the training data, thereby achieving zero training er-

ror (Belkin et al. 2019, p. 15849). With our preceding discussion of central

ideas in machine learning in mind, one might take this behavior as a clear-

cut indication for overfitting and a poor predictive performance of artificial

neural networks on new data. However, as several authors show in em-

pirical experiments, artificial neural networks “exhibit a remarkably small

difference between training and test performance” (Zhang et al. 2017, p. 1)

and, consequently, “good generalization behavior” (Neyshabur et al. 2017,

p. 5947). Clearly, this seems peculiar as it is at odds with the standard

theoretical framework of machine learning, especially regarding its treat-

ment of the under- versus overfitting problem and the conventional wisdom

presented in standard textbooks that “a model with zero training error is

overfit to the training data and will typically generalize poorly” (Hastie

et al. 2009, p. 221). Note, that these observations are also at odds with

the philosophical view of overfitting existing evidence as a “methodologi-

cal sin” that violates the goal of predictive accuracy—it seems as artificial

neural networks were able to fit the evidence perfectly while preserving the

flexibility that is necessary to predict new data correctly.

Thus, apparently, the case of artificial neural networks is not appropri-

ately captured by the depiction in figure 2 where, as we have seen, an

algorithm’s ability to predict new data diminishes with increasing capacity

of the underlying hypothesis class, that is, as soon as the algorithm be-

comes subject to overfitting. As a consequence, Belkin et al. (2019) propose

and empirically confirm an alternative framework that combines the tradi-

tional context of under- and overfitting—the “classical” regime according

to the authors—with the specific behavior of artificial neural networks—

the “modern” interpolating regime. The main feature of their framework is

what the authors refer to as the double-descent risk curve depicted in fig-

ure 6. As becomes evident, this curve corresponds to the classical U-shaped

curve depicted in figure 2 above, as long as an algorithm’s capacity is be-

low the so-called interpolation threshold. This threshold marks the point

beyond which an algorithm achieves zero training risk or, in other words,

interpolates, that is, perfectly fits the training data. Now, while prediction

rules obtained directly at the threshold generally exhibit a high test risk

as shown in the figure, indicating a low predictive accuracy, Belkin et al.

(2019, p. 15850) “show that increasing the function class capacity beyond
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this point leads to decreasing risk, typically going below the risk achieved

at the sweet spot in the ’classical’ regime.” This means that large or deep

artificial neural networks with a complex architecture involving many layers

and incorporating a high number of features as inputs are suited particularly

well for any kind of prediction task.

Figure 6: Curves for training risk (dashed line) and test risk (solid line) depicting the
double-descent risk curve, which incorporates the U-shaped risk curve (i.e., the
“classical” regime) together with the observed behavior from the “modern”
interpolating regime, separated by the interpolation threshold. (Belkin et al.
2019, p. 15850).

What, then, is the mechanism behind this observation? In fact, apart

from the empirical confirmation of the double-descent risk curve, there is

little insight, let alone consensus in the literature as to what might be the

driving force behind the behavior of artificial neural networks: “until re-

cently it has been difficult to explain why they work so well” (Buckner

2018, p. 5355). Most notably, the combination of severe overfitting and

high generalization performance that is at the heart of the double-descent

framework proposed by Belkin et al. (2019) still represents “a phenomenon

that remains largely unexplained” (Neyshabur et al. 2017, p. 8). A possible

key to unlock at least tentative answers to the preceding questions seems

to be the procedure by which the weights of an artificial neural network are

chosen.11 The starting point of the analysis concerns “the precise rela-

tionship between optimization and implicit regularization” (ibid., emphasis

added) in the determination of a network’s weights, a direction investigated

by several other authors as well (Belkin et al. 2019, Neyshabur et al. 2015,

Zhang et al. 2017). The idea—for which all of the mentioned authors gather

experimental evidence—is that the procedure that determines a network’s

weights seems to possess an implicit preference for “simple” prediction rules,

as it often ends up with solutions of a rather small “complexity” even though

11 For the sake of completeness, note that this procedure consists in an optimization
algorithm that is called stochastic gradient descent (SGD) with backpropagation. A
detailed treatment can be found in Goodfellow et al. (2016, Ch. 5.9 and 6.5).
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the network’s overall architecture is very complex. This is why the behav-

ior is called “implicit regularization”, since it is not explicitly built into the

algorithm and it performs regularization, that is, a “modification [. . . ] to a

learning algorithm that is intended to reduce its generalization error [the er-

ror made when predicting new data] but not its training error” (Goodfellow

et al. 2016, p. 117). This implicit regularization, albeit being considered a

“major issue still left unresolved” (Neyshabur et al. 2017, p. 8), can explain

why vastly complex artificial neural networks with zero training error do

not overfit, but rather achieve a high predictive accuracy as suggested by

the double-descent graph above.

Now, the final question that remains to be answered concerns the spe-

cific nature of “simplicity” or “complexity” as discussed in the context of

implicit regularization that is at work in the determination of a network’s

weights. Clearly, it cannot be related to the overall complexity of the chosen

hypothesis class, for the latter depends on the network architecture and will

necessarily be high for artificial neural networks beyond the interpolation

threshold. So, in which regard do the weights of resulting prediction rules

tend to be simple? The link to the notion of simplicity that is relevant in

this context is the insight that all weights of an artificial neural network can

be stacked in a large vector whose “size” can be computed subsequently.

This is usually achieved by employing a specific function, called norm, that

takes the elements of a vector—the weights of a network in the case at

hand—as its input and yields a real number, a vector’s size or norm, as its

output (Goodfellow et al. 2016, p. 37). Thus, when stating that the pro-

cedure selecting a network’s weights exhibits an implicit regularization in

the sense that it often yields simple solutions, this means that it “will often

converge to the solution with minimum norm” (Zhang et al. 2017, p. 9).

In this situation, many weights will be of a rather small magnitude while

others will even end up with a value of zero, indicating a limited or even

non-existent connection between the corresponding nodes of the network

(Neyshabur et al. 2015, p. 6).

After this discussion full of technical details regarding artificial neural

networks and their behavior that distinguishes them from other machine

learning methods, let me once again stress its philosophical implications:

We have seen that artificial neural networks represent a methodology that

is able to overcome the classical problem of overfitting and instead achieves

both a near-perfect fit to existing evidence and a high predictive accuracy.

This behavior hinges on the number of inputs to the network being high
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which means that the dataset at hand needs to contain a high number of

properties associated with each observation. Then, by means of an implicit

regularization, the algorithm that selects the network’s final configuration

decides by how much each property should be weighted and which of them

should not be considered in the final configuration that is used to compute

predictions. Although the precise functionality of the implicit regularization

remains opaque, the entire setting provides an exciting bridge across which

we can return to the reference class problem introduced in section 2.
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4 Do Artificial Neural Networks Solve the Reference Class Prob-

lem?

Having examined the reference class problem and central ideas of machine

learning separately, the latter in particular in the context of artificial neu-

ral networks, the crucial step to answer the question overarching this text

consists in analyzing the combination of both subjects: How, if any, are

artificial neural networks suited to deal with the reference class problem

that plagues classical statistics? In section 4.1, I argue that, in fact, arti-

ficial neural networks remedy specific instantiations of the reference class

problem to a certain degree. In section 4.2, however, I try to show that this

result comes with significant qualifications by presenting several objections

to this line of argumentation, some of which can be only partially refuted.

4.1 The Argument: In Some Cases They Do . . .

The discussion of the reference class problem revealed that when trying to

infer whether an individual belongs to a particular target class, one ought

to base the inference on the narrowest reference class available, at least if

the goal is epistemic accuracy. This holds even in cases in which frequency

information for this class is imprecise, for it might be replaced with infor-

mation regarding the expected frequency. Consequently, much of the recent

literature focuses on the correct computation of expected frequencies when

trying to maximize accuracy in order to overcome the reference class prob-

lem. This is, as we shall see shortly, where artificial neural networks come

into play.

Before, let us briefly reflect on how to conceive of the reference class prob-

lem’s general structure within the schema of direct inference, be it (DI) or

(DIexp), from a machine learning perspective. First, note that the entire

setup resembles a setting of binary classification: We would like to infer or

predict, whether some individual, a, is a member of a given target class,

T , so we might attach a binary label y ∈ {0, 1} to individual a that takes

on the value “1” if a ∈ T and the value “0” otherwise. Furthermore, to

enable such a prediction, some machine learning algorithm has to come up

with a general prediction rule, h, based on an existing dataset, X ∈ Rn×d.

Clearly, the data from which an algorithm learns the prediction rule can be

interpreted along the lines of existing frequency information in the premises

of (DI) or (DIexp). In particular, note that there seems to be a close anal-

ogy between the concept of a reference class and the structure of the data

that is used as an input for machine learning algorithms, since in the for-

34



mer, by definition, each element has a number of properties such as “dog”,

“smallbreed dog” or “wire-haired dachshund of less than ten kilograms”,

while in the latter, very similarly, each observation, xi, is associated with

a range of d properties. Finally, as outlined above, once obtained from the

data, the prediction rule then predicts the label for a new and previously

unseen observation, for instance the individual a, by mapping its properties

to the binary label that indicates its belonging to the target class, such that

h : Rd → {0, 1}, a 7→ h(a) = y.

With this setup in mind and by means of three preliminary observations, I

will now illustrate how an application of artificial neural networks resembles

approaches that have been proposed in the literature to tackle the reference

class problem.

4.1.1 First Observation: “Big Data” is Related to Narrowness

and Precision

The first observation is rather straightforward and concerns the nature of

the data that is used as an input to artificial neural networks and machine

learning algorithms in general. We have seen that when making direct infer-

ences, information about the frequency of elements of a target class among

the elements of a reference class, that ought to be as narrow as possible,

plays a central role. A problem arises, when the normative guideline of

choosing the narrowest reference class conflicts with the precision of the

frequency information for that class—the “conflict of narrowness and pre-

cision” (Wallmann 2017, p. 485) mentioned above, that led to the debate

about the correct computation of expected frequencies. Artificial neural

networks, however, although resting upon ideas from the first half of the

last century, can be considered a relatively new technology that gained its

applicability mainly from what Wheeler (2016, p. 330) refers to as “the

era of big data”. As he points out, “big” can be interpreted along two

dimensions that come to mind very naturally within the structure of the

data used in machine learning: Recall, that it is governed by the number of

observations, n, on the one hand, and, on the other hand, by the number

of features or properties, d, both of which could be identified as important

for the functionality of artificial neural networks above.

Now first, the sheer number of observations in datasets that are handled

nowadays is vast. Thus, while classical statistics is in large part concerned

with assessing the significance and precision of inferences made from a re-
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stricted sample, either by analyzing the small-sample behavior of estimators

or by employing—relatively conservative—asymptotic arguments, “we are

now routinely handling population datasets directly or sample sizes so im-

mense [. . . ] that they behave like population data” (Wheeler 2016, p. 330).

As a consequence, the considerations regarding the precision of inferences

in classical statistics do not, or at least to a far lesser extent, carry over to

applications of machine learning, since in this case, the representativeness

of a given sample for the entire population is almost guaranteed solely based

on the size of the sample.

Second, most datasets nowadays belong to the high-dimensional setting out-

lined above, where in addition to a large number of observations, n, each

of them is associated with a—possibly much higher—number of properties,

d (Wheeler 2016, p. 327). This especially holds for applications of artifi-

cial neural networks, since, as shown above, they are particularly suited for

these kinds of settings that typically occur in applications involving text,

speech or images. In fact, the discussion of the double-descent framework

and its intuitive depiction in figure 6 revealed that artificial neural networks,

contrary to other machine learning methods, perform best in situations in

which the data contains a very high number of features. In the context

of the reference class problem, where any further predicate that is added

to the definition of a set yields a narrower reference class, this means that

artificial neural networks regularly deal with very narrow reference classes

and that, moreover, they have a high ability to do so.

Consequently, “big data”, understood as the two-dimensional concept I

just described, provides a promising basis to approach the reference class

problem employing artificial neural networks, for it addresses both compo-

nents of Reichenbach’s initial idea: to choose a reference class that is narrow

and for which reliable statistics are available. Furthermore, the conflict be-

tween narrowness and precision is sidestepped by the fact that even for

narrow reference classes, the total number of members and hence the pre-

cision of information obtained from a sample is high. This also ameliorates

the concerns regarding the correct computation of expected frequencies that

I discussed above.

At this point, one might object that many of the observations made in this

paragraph are not confined exlusively to the case of artificial neural net-

works and might instead be part of an argumentation for using machine

learning methods in general to approach the reference class problem. Al-

though this is a legitimate objection, I would like to underscore the fit of

artificial neural networks to situations involving high-dimensional data that
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makes them stand out against other methods of machine learning as par-

ticularly suited to deal with the reference class problem. By the end of the

chapter, the reader hopefully acknowledges that I convincingly made a case

for artificial neural networks, if any, being the appropriate machine learning

method in the context of the reference class problem. As an intermediate

step, however, let us examine another more general observation.

4.1.2 Second Observation: Empirical Risk Minimization is

Related to Epistemic Accuracy

As pointed out in the discussion of the reference class problem, authors like

Thorn (2017) and Wallmann (2017) set out their argumentation under the

normative premise that the reference class ought to be chosen such that

epistemic accuracy is maximized. While Thorn (2017) measures epistemic

accuracy in terms of various proper scoring rules, Wallmann (2017) illus-

trates the argument using the average squared difference between inferred

values and true values as shown in equation (1). In both cases, accuracy

is maximized if the chosen reference class leads to the smallest deviation of

predictions from true values. In the case of the average squared difference,

this becomes particularly obvious by the fact that it is bounded below by

zero—the situation in which the inferences for all individuals correspond to

the true values—and gets higher as the deviation of predictions from true

values increases.

At this point, I would like to draw the attention to an interestig analogy

that arises in the context of machine learning. We have seen that in order

to learn a general prediction rule from a sample of training data, machine

learning algorithms operating withing the ERM framework follow the deci-

sion rule of choosing the prediction rule that results in the lowest possible

training risk. This risk is computed as shown in equation (4), that is, as

the average over some loss function evaluated at each observation within the

training data. Furthermore, the rationale of a loss function is to capture the

deviation between a prediction made by the general prediction rule that an

algorithm inferred and the associated true observation. With this in mind,

let us reconsider expression (4) for the risk of a machine learning prediction

and expression (1) for the average squared difference used by Wallmann

(2017, p. 489) in his discussion of the reference class problem. There is

no doubt that both expressions are structurally similar, since both of them

consist of an average that is taken over a range of n individuals and some

measure specifying the cost that occurs in the case of a wrong prediction.
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Indeed, the squared difference employed by Wallmann is an instantiation of

a loss function that is commonly applied in machine learning in the context

of regression problems and that is usually referred to as square loss in the

literature (Shalev-Shwartz and Ben-David 2016, pp. 48). The similar struc-

ture of the expressions hints at an observation that might seem even more

striking: Both of them are linked by a common goal they try to achieve.

While the normative criterion guiding the argumentation in Thorn (2017)

and Wallmann (2017) is to maximize epistemic accuracy, the goal of ma-

chine learning algorithms is empirical risk minimization and hence, accuracy

maximization as well (Goodfellow et al. 2016, pp. 101). Note, however, that

there is a subtlety to address before drawing a conclusion from this observa-

tion of converging goals: Thorn’s proof that frequency information for the

narrowest reference class maximizes epistemic accuracy relies on the com-

putation of differences between predictions and true values, but the idea of

the ERM framework is to infer the prediction rule that maximizes accuracy

within the training sample first and to use it to compute actual predictions

only afterwards, within the test sample—so can we say anything about the

test risk that is obtained from the differences between actual predictions

and true values in the test sample, if machine learning algorithms are solely

confined to actively minimizing the training risk? As it turns out, we can,

for we have seen above that besides minimizing the training risk, machine

learning algorithms should also “[m]ake the gap between training and test

error small” (Goodfellow et al. 2016, p. 109), either by balancing over- and

underfitting succesfully as depicted in figure 2 or—in the case of artificial

neural networks—by going beyond the interpolation threshold as depicted

in figure 6. Thus, maximization of accuracy in solutions to the reference

class problem and in machine learning can in fact be regarded as conceptu-

ally similar. Consequently, machine learning algorithms seem appropriate

to approach the reference class problem, for their goals converge with those

of other solutions put forward in the literature.

4.1.3 Third Observation: There Are No Distributional

Assumptions

The third and final preliminary observation once again concerns the debate

regarding the correct computation of expected frequencies in the recent lit-

erature. Above, I argued that the “era of big data” generally weakens con-

cerns about imprecise frequency information for narrow reference classes

that would otherwise require the calculation of expected frequencies. Apart
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from this observation, however, recall that the philosophical discourse cen-

ters around the question as to how the weights used to compute expected

frequencies ought to be determined. In this context, a particular empha-

sis was put on the—implicit or explicit—assumptions about the probability

distribution from which the weights are obtained. Especially Wallmann

(2017, p. 496) criticizes the strategy to obtain the weights from arbitrary

subsets of the broader reference class employed by Thorn (2017) and sug-

gests to use “’exceptional’ subsets” instead of arbitrary ones. According to

his argumentation, that I also outlined above, these subsets would be more

appropriate for inferring the weights, since they are related to the target

class one is interested in. As an example, Wallmann (2017, p. 496) con-

siders the target class of people who smoke and argues that smoking rates

“vary strongly with gender, age, education, poverty status and many more”,

thereby alluding to a relation between some particular subsets of a broader

reference class and the target class. However, the precise nature of this rela-

tion remains unclear, for he mentions a causal relevance of the exceptional

subsets to the target class and proceeds by concluding that hence, “they

are probabilistically dependent” (ibid.). Although this direction of the ar-

gument is certainly true, the opposite direction does not hold: We are not

licensed to infer a causal relation between some subset of a reference class

and the target class merely from observing some probabilistic dependence—

“correlation does not imply causation” as the saying goes. Yet, to follow

Wallmann’s proposal would require an additional rule of inference that is

able to identify causal relations and thus the “’exceptional’ subsets” he

refers to. In his article, he seems to largely neglect this aspect, because the

only comment defending his proposal against this latter objection is that

“we consider certain classes of individuals, because we believe that they are

causally related to the target class” (ibid., own emphasis). The discussion

as to whether a formal method of causal inference would license more than

a mere belief in a causal relation or whether it would serve as a justification

of this belief is beyond the scope of this text. Suffice it to say that at least

prima facie, an objection against selecting arbitrary classes of individuals

that is based on some not otherwise specified belief as the more appropriate

decision rule seems rather shaky.

In sum, the issue that existing solutions to the reference class problem

are facing can be described concisely as follows:

“[E]xpected accuracy is relative to the distribution employed to cal-
culate the expected accuracy. Maximising expected accuracy is only
a legitimate aim if the distribution is empirically accurate, i.e., if it
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matches the relative frequencies in the world” (Wallmann 2017, p.
490).

It is this observation that creates another opportunity for artificial neural

networks to enter the debate as a possible remedy to the reference class prob-

lem. As mentioned above, one central difference between machine learning

and classical statistics consists in the fact that the former remains entirely

agnostic about the probability distribution from which the data was sampled

(von Luxburg and Schölkopf 2011, p. 653). In other words, this means that

within the ERM framework, machine learning algorithms only pursue the

goal of minimizing empirical risk without making any prior distributional

assumptions and without assuming or trying to infer probabilistic or causal

relationships within the data. As a consequence, there is no distribution

employed in their operation and thus, they sidestep the problem discussed

in this section.

4.1.4 The Artificial Neural Network Approach to the Reference

Class Problem

After three preliminary observations regarding the intersection of the ref-

erence class problem and artificial neural networks, some of which concern

the field of machine learning as a whole, I would like to put together the

different and still distinct pieces that I worked out in the course of this text.

The result, I hope, will reveal that there are in fact cases, in which artificial

neural networks offer a solution to the reference class problem.

As a first step, consider the reference class problem and, more generally,

the schema (DI) of direct inference from the machine learning perspective

as described above. Now, assume that we employ an artificial neural net-

work to approach the situation at hand. While the schema (DI) tells us to

begin the direct inference with a premise regarding frequency information

about the occurrences of elements of the target class T we are interested in

among elements of the reference class R that we have to choose, the outline

on artificial neural networks revealed that in their case, everything starts

with input data given in a design matrix X ∈ Rn×d. At this point, we might

invoke further insights about the functionality of artificial neural networks

and, in particular, the findings made in the first observation above: Artifi-

cial neural networks perform best in a high-dimensional setting—this was

indicated by the double-descent framework—and the “era of big data” reg-

ularly brings about datasets that belong to precisely this setting—this was

an insight of the observation made in section 4.1.1. Consequently, it seems
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reasonable to assume that d � n for the case at hand, that is, that it also

belongs to a high-dimensional setting.

Next, we have to examine the structure of the input data more closely.

Recall, that an artificial neural network processes the data observation by

observation, which is why one observation, xi ∈ Rd, at a time enters the net-

work’s input layer. We have seen that the dimension d indicates the number

of features associated with each observation xi, so each observation might be

interpreted as possessing d different properties or characteristics. Bearing

in mind the first preliminary observation, namely that d is likely to be high

and that a reference class gets narrower with each predicate that is added

to its definition, we can conclude that an artificial neural network starts the

whole prediction exercise with the narrowest reference class possible that

is defined by a high number d of properties. Thus, this very first step is

in line with the recommendation by Thorn (2017) and Wallmann (2017) to

use—frequency—information for the narrowest reference class available.

Before proceeding, let me briefly address an objection that might be raised

at this point to bring the argument to a halt right from the beginning. I

have argued that each observation xi is associated with d different charac-

teristics. These might be seen from at least two different angles. To explore

them, recall the example from above where we considered a design matrix

X ∈ R12×6, that contains information on age, breed, coat type, color, weight,

and height for Flint and eleven other dogs in the neighborhood. Now, the

first perspective would be to hold that each dog in the dataset is associated

with the same features, namely those six that I just mentioned: Flint pos-

sesses the property “age” and so do all other dogs. The second perspective

would be that albeit the names of the features—“age” and so on—are the

same for all dogs, the particular instantiations are not: For instance, Flint

might be of the same age as Clint, but all other dogs might be of a different

age. The two perspectives thus raise the question as to which of them is the

one that is implicitly built into the operation of artificial neural networks

and, furthermore, whether the first perspective really gives rise to a refer-

ence class as regularly conceived of in the literature. Indeed, what defines a

reference class in the context of characteristics such as “age” or “height”—

and opposed to characteristics such as “dachshund”—is not the property of

possessing the characteristic or not, but its specific instantiation: While it is

uninformative to distinguish the reference classes R1 := {x : x is a dog} and

R2 := {x : x is a dog that has an age}, this is not true for a comparison of

R1 and R′2 := {x : x is a dog that is less than ten years old}, for in the lat-
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ter case it holds that R′2 ⊆ R1, while in the former case we have R1 = R2. I

contend that it is the second perspective that artificial neural networks take

when processing the data. This is because they learn from any structure

the data possesses, in particular from the features’ different instantiations.

A way to illuminate this point is to think of transforming the data such that

each column in the new design matrix corresponds to a specific instantiation

of the properties contained in the original design matrix and contains the

value “1” if an observation has this property and “0” otherwise. So instead

of the feature “age” in the original design matrix, the new design matrix

would have features “nine years old”, “ten years old” and so on. Clearly, it

could be used as an input to an artificial neural network as well.

So let us return to the main line of the argument. Given the input data

X ∈ Rn×d, the artificial neural network starts the process of learning from

it. As outlined above, this means that all weights within the network are

chosen such that the empirical risk is minimized, that is, in a way in which

the predictions computed from a particular configuration of weights are as

close as possible to the true values within the training sample. At this

point, I would like to underscore the importance of the second preliminary

observation made in section 4.1.2: Very much in the spirit of the sugges-

tion to maximize epistemic accuracy when approaching the reference class

problem, artificial neural networks operate within the ERM framework and

hence maximize accuracy as well. We have seen, for instance in figure 6, that

artificial neural networks typically achieve perfect accuracy in the training

sample, that is, the training error is zero. In the context of the reference

class problem, this means that artificial neural networks are able to exploit

the information regarding the different characteristics in the data to an

extent that allows them to correctly predict for each observation whether

xi ∈ T or not. The configuration of weights that allows them to do this

is the general prediction rule h that can be used to predict new observations.

Before proceeding to the final step that concludes my argument, I would

like to clarify one aspect in the artificial neural network approach to the

reference class problem and its relation to the schema (DI). In the schema

(DI), existing data and the observation that a new individual belongs to

the chosen reference class are used as premises to infer the probability with

which the individual also belongs to the target class. In the artificial neural

network approach, however, the learning process takes place prior to any

actual prediction. This process might thus be interpreted as several instan-

tiations of (DI) in which the algorithm iteratively observes an individual
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along with its characteristics in the training sample, issues a prediction for

it and evaluates it against the true realization. Only upon completion of

this process, the network’s weights are fixed and constitute the prediction

rule h that can be used to compute predictions for new observations. Note,

that this implies that once confronted with a new observation, the network

does not explicitly evaluate its different characteristics in order to assign it

to the reference class that yields the most precise prediction for its belonging

to the target class. Instead, the rationale is that all information regarding

the different properties and their relevance for an individual being member

of the target class is learned from the data and hence implicitly embodied

in the final configurations of weights.

The crucial part that makes artificial neural networks stand out as partic-

ularly suited to deal with the reference class problem against other methods

of machine learning is the following: the precise way in which they exploit

the information regarding the different characteristics in the data during the

learning process. The discussion of aspects that distinguish artificial neural

networks from other methods of machine learning allowed us to identify the

central role of implicit regularization that takes place in the determination

of a network’s weights. We have seen that it is this particular feature of

artificial neural networks that prevents them from overfitting, ensures their

high predictive ability and generally yields a final prediction rule h that is

simple in the sense that the network’s weights have a small norm. Thus,

by means of implicit regularization, the impact that each of the d inputs to

the network—the characteristics of the observations—should exhibit on the

network’s output—the prediction whether an individual belongs to a target

class or not—is determined following the normative guideline of maximizing

accuracy. This is a process in which some weights are assigned a high value,

since the impact of the associated input on the final output is high, and oth-

ers are assigned a low value—maybe even zero—, since the associated input

does not contribute to the prediction of the output. Important properties

are considered important for the prediction, less important properties are

considered less important or are neglected altogether. As a consequence, the

process of implicit regularization can be conceived of as a decision process

that selects the reference class that is most suitable to predict with maximal

accuracy whether a new and previously unseen individual is an element of

a target class or not. So in summary, one can say that situations in which

artificial neural networks are regularly employed, that is, situations involv-

ing “big data”, allow them to use precise data for very narrow reference

classes and to incorporate the information in a combination of weights that
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maximizes their predictive accuracy. This is why artificial neural networks

are suited to deal with the reference class problem and might in fact be a

remedy to it in these situations.

4.2 . . . In Many Others, They Don’t: Possible Objections

While I addressed several minor objections that might be raised against my

argumentation directly throughout the text, there are more severe ones that

require an own section devoted to their examination—this is the purpose of

the subsequent paragraphs.

First, we have to address the issue of accuracy. Undeniably, it played

a central role thus far by serving as a normative criterion guiding Thorn

(2017) and Wallmann (2017) in their treatment of the reference class prob-

lem and machine learning algorithms in their choice of a general prediction

rule from an entire hypothesis class in the ERM framework. Consequently, I

use the concept of accuracy in my argumentation to establish a link between

the philosophical literature and the behavior of artificial neural networks.

However, there are at least two drawbacks to this strategy. The first one

is mentioned by Wallmann (2017, p. 489) who observes that the result de-

rived by Thorn (2017) that using frequency information for the narrowest

reference class available maximizes epistemic accuracy only holds as long as

the latter is measured by proper scoring rules. Consequently, simply using

another measure of accuracy that does not conform to the definition of a

proper scoring rule might invalidate Thorn’s entire reasoning that I some-

how incorporated into my own argumentation. Yet—and this is my reply

to the objection—proper scoring rules come in various forms that both cor-

respond to several common loss functions used in machine learning and are

widely applicable to situations in which accuracy needs to be measured.

When reasoning about accuracy, it therefore seems reasonable to do so in

terms of proper scoring rules.

The second drawback to my strategy of using the concept of accuracy as

an analogy between treatments of the reference class problem and machine

learning, however, is more serious. Recall the observation by Hájek (2007,

p. 568) mentioned above that the answer to the question as to what is the

right reference class might be a matter of context, depending, for instance,

on “the weighing of utilities”. This point then challenges the concept of ac-

curacy altogether, regardless of the specific measure that is used to capture

it: What if accuracy is not the normative criterion by which our choice of a

reference class ought to be guided? At this point, I must confess that I do
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not have an appropriate strategy to attenuate this objection. I acknowledge

the relevance of questioning the concept of accuracy, but neither do I see a

convincing alternative to it nor do I see how possible alternatives will not

rely on the concept of accuracy as well, in some way or another. Thus, my

use of the concept of accuracy can be seen as a working hypothesis that I

employ in lack of a more appropriate concept.

Another objection that concerns both the argumentations by Thorn (2017)

and Wallmann (2017) as well as my own can arise from questioning the na-

ture of what is in fact predicted making use of the chosen reference class

R. Clearly, we are interested in predicting whether an individual a is an

element of a target class T , a ∈ T , based on information involving R. But

does an argumentation in favor of maximizing accuracy address this type

of single-case prediction properly? Recall, that both the accuracy measure

employed by Wallmann shown in equation (1) and the expression for the

training or test risk of a machine learning algorithm in equation (4) run

over n observations instead of only one. This observation leads Wallmann

(2017, p. 490) to question whether the long-run interpretation of the accu-

racy measures I just mentioned is even relevant for the short run. He tries

to find an answer by referring to Pollock (2011, p. 349) who states that in

the context of single-case versus long-run prediction

“[p]eople sometimes protest at this point that they are not interested
in the general case. They are concerned with some inference they are
only going to make once. They want to know why they should reason
this way in the single case. But all cases are single cases. If you reason
in this way in single cases, you will tend to get them right.

Thus, following Pollock’s suggestion, one should not treat single-cases in

a special way, for many of them will eventually add up to a long run. Wall-

mann (2017) seems to embrace this approach largely unchallenged. I am,

however, skeptical about the argument that many single cases are easily

equated with one long run. After all, it might be conceptually impos-

sible, due to ontological reasons, to predict anything about a previously

unseen individual. Yet I acknowledge that when facing a situation in which

a single-case prediction ought to be made, evidence obtained from known

individuals is likely to be the best basis for it. So again, as in the case

of accuracy measures, the strategy of deriving single-case predictions from

long-run considerations is certainly not without shortcomings, but it is—at

least as far I can see—the best strategy available.
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While the first two objections concerned the general setup of the argu-

mentation, the last two that follow focus more explicitly on the role of

artificial neural networks and the data they use as their input. Above, I

argued that artificial neural networks are able to approach and solve the

reference class problem because they are structured such that they always

start their processing of the data with the narrowest reference class possible,

since d features enter the input layer. Subsequently, the relevance of the

features for the network’s output is assessed and embodied—via implicit

regularization—in the final combination of weights that yields the highest

predictive accuracy. Yet this line of argumentation highly understates the

role of human individuals and especially their prior knowledge, for instance

regarding the data. Recall the concept of inductive bias, that I mentioned

when discussing basic concepts of machine learning. The bottom line of

the concept is that machine learning is only possible when human expertise

is part of the process and biases an algorithm’s quest for a general predic-

tion rule, that would otherwise become infeasible, in a particular direction.

Thus, it is a human agent who defines a hypothesis class H from which

an algorithm chooses the prediction rule h. As we have seen, in the case

of artificial neural networks, this means that the network’s architecture is

specified before the algorithm gets to learn anything. Furthermore, it is a

human decision as to what data is used as an input to a machine learn-

ing algorithm. Very likely, this also entails the human decision as to what

phenomena should be measured and thus captured in the form of data in

the first place. As becomes evident, the claim that there are situations in

which artificial neural networks are able to solve the reference class prob-

lem seems exaggerated and is certainly misleading. Thus, a more reasonable

claim would be to state that given an appropriate amount of data and an

architecture of sufficient complexity, there are situations in which artificial

neural networks are able to solve the reference class problem.

Unfortunately, the last statement directly raises another issue: What is

an appropriate amount of data? So far, I have confined my argumentation

to situations involving high-dimensional data and, more generally, to data

that is representative for “the era of big data”. I did so because the dis-

cussion of artificial neural networks revealed that they are applied regularly

to and perform best in these situations, but also because high-dimensional

data that contains many features for each individual observation squares

well with the idea of preferring narrow reference classes over broader ones.

Having said that, let us return to Flint, the dachshund, for which we are

still pondering whether he has fleas or not. There is no doubt that this
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example does not belong to a “big data” setting, neither with respect to

the number of observations involved, nor regarding the characteristics as-

sociated with each observation. Nevertheless, it is a realistic example for

the type of inference we make day after day. So how do artificial neural

networks contribute to solving the reference class problem in this kind of

situations? My rather disappointing answer is that they are of no help

in these situations. This is because the process of learning, that is, the

process of finding the optimal combination of weights in a network that is

sufficiently complex to achieve a high predictive ability, requires amounts of

data that are beyond human grasp and thus beyond situations of everyday

reasoning. Furthermore, the double-descent framework that is central to

explaining the success of artificial neural networks relies heavily on data

that contains both a high number of observations and a high number of

features. As it turns out, this is the qualification that discerns situations

in which artificial neural networks might solve the reference class problem

from many others in which they do not.
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5 Conclusion

In the course of this thesis, I tried to shed light on the relation between ma-

chine learning and classical statistics. In order to turn this into a feasible

undertaking, I confined the investigation to the question as to whether one

particular method of machine learning, namely artificial neural networks, is

subject to one particular problem of classical statistics, namely the refer-

ence class problem.

In a first step, the analysis of the reference class problem and solutions to

it that have been proposed in the literature revealed that, most importantly,

one ought to choose the narrowest reference class for which frequency in-

formation is available when trying to maximize epistemic accuracy. Recent

results, especially those by Thorn (2017) and Wallmann (2017), indicate

that this even holds in the case of imprecise frequency information.

In a second step, we have seen that artificial neural networks differ from

other methods of machine learning mainly because they are not subject to

overfitting: In most cases, they perfectly fit the training data while being

still flexible enough to exhibit a high predictive accuracy when confronted

with previously unseen data. Furthermore, they perform best in situations

involving high-dimensional or “big data” and their behavior is best illumi-

nated by the double-descent framework introduced by Belkin et al. (2019).

My subsequent argumentation made the attempt to synthesize the find-

ings from the first and the second step. I argued that the concepts “nar-

rowness” and “reliability” that play a central role in the debate concerning

the reference class problem are related to “big data” that is processed by

artificial neural networks. The key insight in this context, for instance

put forward by Wheeler (2016), was to conceive of “big data” as a two-

dimensional concept that involves both a high number of observations and

a high number of features.

Furthermore, I pointed out that the normative guideline of maximizing epis-

temic accuracy when addressing the reference class problem is analogous to

the ERM framework in machine learning. This is because machine learning

algorithms operating within the ERM framework follow the decision rule of

choosing the prediction rule that results in the lowest possible training risk

and hence, in the highest possible accuracy.

The latter observations together with the insights into the specific function-

ality of artificial neural networks allowed me to conclude that there are in
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fact situations in which artificial neural networks are able to overcome the

reference class problem. These situations necessarily involve “big data”,

such that a high number of features enters a network’s input layer. Thus,

they start with the narrowest reference class available and with the goal of

maximizing accuracy. Then, the algorithm that determines the final con-

figuration of weights achieves this goal via an implicit regularization that is

unique to artificial neural networks and prevents them from overfitting.

Clearly, this line of argumentation is not without objections. For this

reason, I mentioned the—from my point of view—most serious ones in the

last part of the text. At least two objections arise from the concept of accu-

racy that plays a central role in my argumentation and also in the general

debate regarding the reference class problem: First, one might question the

measurement of accuracy using proper scoring rules and second, one might

question the concept of accuracy altogether as the right normative guideline

when trying to solve the reference class problem. Although I acknowledge

the relevance of questioning the concept of accuracy, I hold that it is at least

the most feasible guideline and can thus be seen as a working hypothesis in

the course of this thesis.

Another serious objection concerns the relation between human involvement

and the agency of artificial neural networks or machine learning methods

in general. My argumentation might have created the impression that, in

specific situations, artificial neural networks can solve the reference class

problem on their own. This, however, masks the relevance of human in-

volvement during the entire process, be it the choice of an architecture for

the network or that of the input data. Consequently, it is a more sensi-

ble formulation that artificial neural networks can aid solving the reference

class problem given an appropriate network architecture and appropriate

input data.

Finally, the question as to what constitutes “appropriate input data” led

us back to Flint and the inference whether he has fleas or not. Here, a

final objection and, in fact, a serious qualification to my argumentation was

that in many everyday situations, artificial neural networks are of no help

in solving the reference class problem. Thus, in these situations, artificial

neural networks fall prey to the reference class problem just as classical

statistics.

What does this result imply for the overall relation between classical

statistics and methods of machine learning? After all, there seem to ex-

ist some very specific situations in which particular methods of machine
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learning go beyond classical statistics. However, the requirements for these

situations are high and of little relevance for our everyday reasoning. Ad-

ditionally, the means by which methods of machine learning achieve to go

beyond classical statistics remain opaque. On the one hand, the role of

human involvement is an issue that is largely neglected, both in machine

learning research and in the philosophical literature. On the other hand,

methods of machine learning—and especially artificial neural networks—are

inherently opaque and “barely explainable” (Schubbach 2019, p. 1). For in-

stance, we have seen that machine learning researchers found some implicit

regularization taking place in the determination of a network’s weights. But

we have also seen that this implicit regularization is considered a “major

issue still left unresolved” (Neyshabur et al. 2017, p. 8). As a consequence,

the present discussion of artificial neural networks and the reference class

problem, that was intended to shed light on the relation between machine

learning and classical statistics, also reveals avenues for future work. In

particular, the role of human involvement in the machine learning process,

that is, the interplay of human and machine agency is a philosophically rel-

evant topic. Furthermore, an important area for future research arises from

the question as to how methods of machine learning might become more

explainable. Although this would not make them more applicable to every-

day situations such as Flint’s case, a philosophical investigation of how to

make the functionality of machine learning methods and the way by which

they arrive at their predictions more explainable might help to overcome

much of their current opacity.
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