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1 Introduction

For decades, the greatest part of time series econometrics and forecasting has

been concerned with the analysis of economic time series such as the interest

rate or the gross domestic product (González-Rivera 2013, pp. 2, for a historical

sketch of time series analysis see Kirchgässner et al., Ch. 1.1). Starting by the end

of the last century, however, the notion of something being “economic” changed

or - more precisely - widened its scope. Nowadays, the economic realm not only

embraces economic entities in a narrow sense, but also other parts of the society,

such as science, education and the health care system (Graupe 2012, p. 639).

Obviously, this tendency also widens the field for applications of econometric time

series analysis, because more time series data is considered as being of economic

relevance.

One example is the application of econometric methods to health care issues

due to an increasingly competitive environment, especially with regard to hos-

pitals. According to the Association of German Hospitals, hospitals face serious

problems in refinancing their continuously increasing costs . An important cost

driver in this context are personnel costs which tend to increase both due to tar-

iff agreements and rising numbers of patients (Gesellschaft Deutscher Kranken-

haustag 2012). In order to limit costs, it is therefore advantageous for hospitals to

implement an efficient and effective mechanism for staff scheduling and rostering.

Since personnel planning naturally depends on the expected demand for a hospi-

tal’s health care services in the future, more efficient planning can be realised by

using more sophisticated methods to predict the future demand. This is where

econometric and especially time series methods come into play, because they are

able “to predict a future event with some degree of accuracy” (González-Rivera

2013, p. 3) which is exactly what hospitals require to improve their planning

processes.

Different attempts on this subject matter have been made in the past, involv-

ing different data and methods. However, one rather pronounced focus of the

literature has been on predicting the number of future patients arriving in the

emergency department of a hospital. This is reasonable, because compared to

other patient groups, emergency patients can be regarded as arriving primarily

stochastic and therefore as being cumbersome to include in any planning pro-

cedure, whether it is at a micro level for staff rosters, or at a macro level for

budgeting (Sun et al. 2009, p. 1). In most of the cases, a so-called Box-Jenkins

approach based on the Autoregressive Integrated Moving Average (ARIMA) class

of time series models has been implemented to model and forecast emergency

patient arrivals (see chapter 2 for details). Despite the fact, that these investi-

gations identify certain key variables which influence the number of emergency

patient arrivals - day of the week, month of the year or season - they disregard
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the pivotal characteristic of the data they use for forecasting: The number of

emergency patient arrivals is necessarily a non-negative integer value, a fact that

is not captured by ARIMA models. Additionally, the literature is far from being

unanimous about all factors which affect the number of emergency arrivals and

it is stated that there are important drivers which are only valid on a local level

(Sun et al. 2009, p. 2).

The aim of this paper therefore is twofold: First, to apply a global theoretical

framework that takes into account the time series as well as the count data

character of the data at hand, in order to forecast emergency patient arrival

counts. Second, it tries to verify the existence of predictors for future emergency

arrivals already found by the literature and to identify additional predictors whose

importance might be restricted to the local level under consideration. The paper

seeks to achieve its aims by first reviewing the existing literature on the topic,

followed by a presentation of the relevant econometric tools. Albeit being an

investigation in applied econometrics, a special emphasis is made on the statistics

underlying the modelling and forecasting process, because methods for count

data “are not yet entirely standard in the econometric literature” (Winkelmann

2008, p. 8). Finally, the theory is applied to a dataset of daily data from an

emergency department of a hospital in Brandenburg, Germany, ranging from 1st

January 2013 to 30th September 2013. Patients in the dataset are stratified into

four different priority groups, according to the time that is allowed to elapse

before medical treatment starts. The entire modelling and forecasting process is

separately applied to each group to reveal possible differences and to provide more

information to decision makers in the hospital. The modelling and forecasting

process is realised by following the three-step procedure presented in González-

Rivera (2013, p. 202), where first the data is analysed, subsequently, time series

models for counts - the Poisson and the Negbin II model - are estimated, evaluated

and selected and finally, density forecasts are constructed to provide as much

information as possible. The humble contribution this paper tries to make to

the literature is the provision of density forecasts for future emergency arrivals,

obtained from count data models. These can be especially useful for practitioners

and their planning purposes, because - as Joseph A. Schumpeter put it once -

“[t]hey are, by instinct, econometricians all of them” (Schumpeter 1933, p. 12).

The remainder of this paper is organised as follows: In chapter 2, already ex-

isting literature on the topic is reviewed and in chapter 3, the relevant statistical

tools are presented, starting with discrete probability distributions and discussing

related time series regression models and their estimation subsequently. In chap-

ter 4, the statistical tools are applied to the dataset already mentioned, in order to

forecast future emergency patient arrivals. Chapter 5 critically summarises this

paper’s contribution and gives an outlook on prospective research questions.
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2 Related Literature

The literature of econometric applications to health care issues is widespread,

both concerning the specific topics covered and methodological approaches used

for investigation. The latter especially applies to the field of analysing and fore-

casting the number of patients arriving at a health care facility, be it a hospital

or a doctor. Starting with pure linear regression analysis and time series re-

gression, a methodologically rich literature has evolved, including Autoregressive

Integrated Moving Average, seasonal Autoregressive Integrated Moving Average

(SARIMA) and different types of count data models. Although the focus of this

paper is on the application of count data models, the results of other investiga-

tions can deliver valuable insight into the mechanisms underlying the arrival of

patients at a health care facility.

The article by Tandberg and Qualls (1994) who are - among others - using an

ARIMA modelling strategy, can be considered as one of the first on the subject

matter, trying to forecast the emergency patient volume. They find that “time

series analysis can provide powerful quantitative short-range forecasts of future

ED volume” (Tandberg and Qualls 1994, p. 305) with remarkably parsimonious

models. Another finding which has been acknowledged in the literature ever since

is the fact, that there is a daily and weekly pattern in the data of patient volume

and arrivals (ibid.). Batal et al. (2001, p. 50) who forecast the daily patient vol-

ume in an emergency department using a linear regression approach specify this

finding by the observation of a peak on Mondays followed by a stepwise decrease

towards the end of the week and identify the day of the week as the strongest

predictor for the daily patient volume. They also identify a seasonal pattern with

a peak during the winter months and the lowest patient volume from April to

August, being however not as predictive as the day of the week (ibid.). Adition-

ally, they state that the inclusion of the climatic variables minimum, maximum

and average temperature as well as amount of precipitation does not improve

the model’s predictive ability by a considerable amount (Batal et al. 2001, pp.

48). This result contrasts with the work conducted by Jones et al. (2002, p. 299)

who forecast the number of beds occupied due to emergency admissions using a

SARIMA model. Apart from weekly and yearly seasonality, they also examine

the effect of climatic factors on the number of emergency admissions, finding sta-

tistically significant negative correlation between the daily average temperature

and emergency admissions (Jones et al. 2002, p. 300). This example shows, that

while there is a broad agreement on seasonal effects and even their direction in

the data of emergency patient arrivals, the existence of climatic effects remains

controversial. Kam et al. (2010, p. 162), for instance, find a strong positive effect

of the daily average temperature on the number of emergency patient arrivals,

whereas Marcilio et al. (2013, p. 769) observe less ability to forecast when in-

cluding temperature-related variables in their models. However, this stems at
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least partly from the fact that the data for each investigation is collected from a

specific hospital in a specific geographical and climatic environment: While the

data analysed by Batal et al. (2001, p. 48) is collected from a hospital in Denver,

USA, Jones et al. (2002) use data from hospitals spread over the entire United

Kingdom, Kam et al. (2010, p. 158) from a Korean hospital and Marcilio et al.

(2013, p. 769) from Sao Paulo, Brazil.

Another approach with regard to the data under consideration is followed by

Sun et al. (2009): They also use an ARIMA model but observations from the

entire dataset of emergency patient arrivals are grouped into three acuity levels

which are then analysed separately, which in fact yields diverging results. While

the time series of patients belonging to the lowest acuity level revealed the usual

weekly and yearly seasonality and was also predicted by a specific day being

public holiday or not, the time series of patients belonging to the middle acuity

level did not show any yearly seasonality (Sun et al. 2009, p. 1). Most strikingly,

the time series of patients belonging to the highest acuity level did not show any

seasonality and could not be predicted by any of the factors identified by the

literature so far, which makes it especially difficult to predict future outcomes

of the series (ibid.). Hence, it can be inferred that the inherent heterogeneity in

an overall time series of patients arriving at a hospital’s emergency department

should be taken into account, in order to obtain meaningful results.

Besides factors driving the number of emergency patient arrivals which differ

across publications, all studies cited so far share a statistical assumption under-

lying their analysis, which is only stated explicitly in Batal et al. (2001, p. 50):

“On any given day the patient volume shows a normal distribution”. In other

words, the number of emergency patient arrivals is either observed or assumed

to be normally distributed, which is why all studies mentioned above base their

analysis on Gaussian models such as ARIMA or linear regression. Since a time

series of emergency patient arrivals is a series of non-negative and integer num-

bers, this might not necessarily be feasible. As a consequence, many studies

apply count data models to the respective time series. Marcilio et al. (2013, p.

769) use a Poisson General Linear Model (GLM) along with a SARIMA model,

resulting in better ability to forecast with the former. McCarthy et al. (2008) use

a Poisson regression model to predict the hourly number of emergency patient

arrivals and observe the usual predictors day of week, season and day being a

public holiday, as well as temperature and the amount of precipitation. Addi-

tionally, patients are stratified into a high and a low acuity level (McCarthy et al.

2008, p. 339). From a purely statistical point of view, the authors argue that a

“Poisson model is plausible” (McCarthy et al. 2008, p. 338), because they ob-

serve the data following a positively skewed distribution and scrutinise the notion

of prior patient arrivals predicting future patient arrivals inherent in time series

models such as ARIMA (ibid.). For that purpose, they check the autocorrela-
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tion in the data, finding a certain degree of first-lag autocorrelation in the raw

time series and no autocorrelation in the regression residuals when controlling

for the factors mentioned earlier (McCarthy et al. 2008, p. 341). Finally, they

also add lagged dependent variables to their model whose individual and joint

effect is not statistically different from zero in a significant way, which in sum

proves their hypothesis of arrivals being independent from each other to be true

(ibid.). This result contrasts with other work in the area of count data models

and their applications to health care topics, examples being Davis et al. (2003)

and Jung et al. (2006) who analyse data of asthma presentations at a hospital

in the Sydney metropolitan area, and Cardinal et al. (1999) who analyse data of

cases of an infectious disease in the Montreal-Centre region, Canada. All of them

use time series models for counts which are more sophisticated than the standard

Poisson regression approach and they explicitly take into account the “rather

pronounced dependence structure” (Jung et al. 2006, p. 2350) in the data. For

that purpose, either parameter- or observation-driven models have been devel-

oped, where in the latter dependence is modelled by including lagged values of

the dependent variable, while the former rely on a conditional mean function

governed by a latent dynamic process (ibid.). Note that either way observations

are not expected to be independent from each other, although the models are

based on the assumption of Poisson-distributed counts.

To sum up the results already found by the literature, the following can be

said: With regard to the crucial factors for the number of emergency patient

arrivals, the day of the week - peak on Mondays, followed by a decrease to-

wards the weekend -, the type of the day - public holiday or not - and - less

pronounced - the month or season, respectively, are unquestioned. This is not

the case for climatic factors such as the temperature and the amount of precip-

itation, where contradictory results depending on the area under consideration

were found. Further heterogeneity was found in stratifying emergency patients

into different acuity levels. Another aspect is the application of count data mod-

els instead of Gaussian models, which can result in a better ability to predict

future arrival numbers. Still controversial remains the notion of arrivals being

independent from each other which heavily affects both econometric modelling

and forecasting and should therefore be tested in advance.
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3 Theoretical Considerations

The present paper makes the attempt to forecast future arrivals of patients at

the emergency department of a hospital. Hence, it is dealing with the number of

a certain event at a specific point in time. The definition of this event -
”
number

of emergency patient arrivals“ - implies, that the paper is in particular concerned

with non-negative integers which are also known as counts. As pointed out in

the second chapter, various studies use time series regression or ARIMA models

to approach this subject matter. However, these models may in fact not be

appropriate for the analysis of count data (Winkelmann 2008, p. 1).

3.1 Modelling Time Series Count Data

In general, the primary aim of econometrics is to model and estimate economic

relationships between some dependent variable or regressand y and one or more

independent variables or regressors x using statistical methods (Wooldridge 2013,

p. 1). Having accomplished this first step, the model can serve to predict fu-

ture outcomes of the dependent variable, which is called model-based forecasting

(González-Rivera 2013, p. 13). Models like linear time series regression and

ARIMA rely on the assumption of a dependent variable which follows a normal

distribution conditional on the regressors (Wooldridge 2013, p. 113). Yet this

is no suitable assumption for the analysis of count data: First, because the nor-

mal distribution belongs to the family of continuous probability distributions,

whereas counts are of discrete nature (Georgii 2015, p. 52). Second, because the

normal distribution is centered around its mean which one would not expect for

the number of emergency patient arrivals. To avoid these shortcomings, prob-

ability models which take into account the specific nature of the data will be

presented below.

3.1.1 Probability Models

As set out by Cameron and Trivedi (1986, p. 3), the standard model for

count data is the Poisson distribution. Since the same statement applies to their

monograph, being the standard textbook for count data, the following lines are

based on Cameron and Trivedi (1986, pp. 3) as well as Winkelmann (2008,

Chapter 2.2).

Consider Y being a discrete random variable defined over N ∪ 0 = {0, 1, 2, . . . },
which means that Y only takes non-negative and integer values. Y follows a

Poisson distribution with intensity parameter µ ∈ R+ denoted by Y ∼ Po(µ) if

and only if the probability mass function is defined as

P (Y = y) =
e−µµy

y!
, y = 0, 1, 2, . . . (1)

6



Note, that the expression in (1) is referred to as probability mass function rather

than probability density function, which is its analogue for the continuous case.

The probability mass function returns the probability of the random variable Y

taking on the value y, so that y is a realisation of Y which obviously must also

be a non-negative integer. Additionally, the probability mass function allows for

the derivation of the distribution’s expected value resulting in

E(Y ) =
∞∑
y=0

µ
e−µµy

y!
=
∞∑
y=1

µ
e−µµy

y!
= µ

∞∑
y=1

e−µµy−1

(y − 1)!
= µ. (2)

In another way which will not be deepened here, it is possible to obtain the

Poisson distribution’s variance as well, which is given by

V ar(Y ) = µ . (3)

Remarkably, the Poisson distribution implies equality of mean and variance,

also known as equidispersion. With regard to the already mentioned normal

distribution which is centered around the mean, the Poisson distribution is char-

acterised by positive skewness, resulting in a longer right tail of the probability

mass function.

It is sensible to assume, that the Poisson distribution, given its characteris-

tics, is better capable to fit the emergency patient arrival counts than a nor-

mal distribution. However, when modelling real-world data, the assumption of

equidispersion can be too restrictive. Other situations, which can arise, are both

underdispersion, E(Y ) > V ar(Y ), and overdispersion, E(Y ) < V ar(Y ). Since

the Poisson distribution is a one-parameter distribution, it cannot capture these

situations adequately.

Another frequently used probability distribution for count data which can serve

as an alternative to the Poisson distribution is the negative binomial distribution

(see Winkelmann 2008, pp. 20 for further discussion). The same random variable

Y , defined above, follows a negative binomial distribution with parameters α ≥ 0

and λ ≥ 0, denoted by Y ∼ Negbin(α, λ) if the probability mass function is as

follows:

P (Y = y) =
Γ(α+ y)

Γ(α)Γ(y + 1)

(
1

1 + λ

)α( λ

1 + λ

)y
, y = 0, 1, 2, . . . (4)

Interpretation of P (Y = y) and y is completely analogous to expression (1),

Γ(·) denotes the gamma function given by Γ(s) =
∫∞
0 zs−1e−zdz for s > 0. Note,
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that in contrast to the Poisson distribution, the negative binomial distribution

requires two parameters to be completely specified. This will result in more

flexibility when it comes to the derivation of regression models, as will be pointed

out in the subsequent part of this chapter. The mean and the variance of the

negative binomial distribution are given by

E(X) = αλ (5)

and

V ar(X) = αλ(1 + λ) = E(X)(1 + λ). (6)

Applying the definition λ ≥ 0 to (6) shows that, in general, overdispersion is a

common characteristic of the negative binomial distribution, because its variance

exceeds its mean. Obviously, this overdispersion tends to zero as λ→ 0 (Winkel-

mann 2008, pp. 20). Just as the Poisson distribution, the negative binomial

distribution is positively skewed with a longer right tail of its probability mass

function. Figure 1 depicts both of the distributions outlined above for E(Y ) = 3.5

and V ar(Y )/E(Y ) = 2 in the case of the negative binomial distribution.
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Figure 1: Count data distributions (E(Y ) = 3.5, following
Winkelmann (2008, p. 29)

8



3.1.2 Derivation of Regression Models

To become tools for econometric analysis, it is necessary for the probability

distributions to be integrated in a regression framework. Before doing so, it is

reasonable to clarify the specific context of the present paper in more formal

terms and to give some definitions. Since it is the aim of this investigation

to model and forecast emergency patient arrival counts, it is concerned with

constructing a model for realisations y of a random and dependent variable Y

at a given point in time t, or more briefly, a time series model. A possibility to

include the temporal dimension in the analysis of random variables is the concept

of a stochastic process, denoted by {Yt}Tt=1 = {Y1, Y2, . . . , YT } (González-Rivera

2013, pp. 54). The notation implies, that a stochastic process consists of a

collection of random variables with a subindex indicating the time, running from

1 to T . Apart from the notation, the temporal dimension is the reason why each

of the random variables in the stochastic process has one and only one realisation

yt; each period t is unique, each period’s realisation is therefore irreversible.

The sample of all realisations from the stochastic process forms a time series

{yt}Tt=1 = {y1, y2, . . . , yT } which corresponds to observable data, whereas the

stochastic process is unobservable. Model-based forecasting tries to exploit this

time series data to infer the characteristics of the underlying stochastic process

in order to be able to predict its future outcomes (ibid.). In a regression context,

this means that the set of regressors xt can be expanded by lagged values of

the dependent variable from some prior period t − q, yt−q, which are known as

autoregressive elements. The correlation between yt and some prior value yt−q is

therefore known as autocorrelation and for all values which are q periods apart

from each other and belong to the same stochastic process, the autocorrelation

function ρ : q → ρYt,Yt−q is defined as

ρq =
cov(Yt, Yt−q)√

var(Yt)
√
var(Yt−q)

, (7)

where ρq is the correlation coefficient for two realisations of the stochastic

process {Yt}Tt=1 being q periods apart from each other (González-Rivera 2013,

pp. 65). Note, that when constructing a model for the emergency patient arrival

counts, the restriction Yt ∈ N ∪ 0, ∀t on the stochastic process has to be made

for obvious reasons.

It is the task now to combine all results mentioned so far in a theoretical frame-

work, that allows to model and forecast the time series for the emergency patient

arrival counts. It therefore has to take explicitly into account that the dependent

variable is a count and can be considered as the realisation of a stochastic process,

which implies serial dependence across observations. Cameron and Trivedi (2013,

Ch. 7) present various models for count data which are able to capture tempo-
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ral dependency of the dependent variable in different ways. One straightforward

way is to specify an autoregressive model, where, based on a basic count data re-

gression model, lagged dependent variables are included as additional regressors,

which is referred to as an observation-driven model, since it is specified by using

past observations as predictors (Cameron and Trivedi 2013, pp. 267, 281). As

a next step, this “augmented” regression model for counts is presented, first in

the Poisson and subsequently in the Negbin II specification, following Cameron

and Trivedi (2013, Ch. 2, 3 and 7) and Martin et al. (2013, pp. 339). Starting

with the probability mass function of the Poisson distribution in (1), it may now

be assumed, that the dependent variable yt given the k × 1 vector of qualitative

or quantitative regressors xt and lagged values yt−q is Poisson distributed with

probability mass function

f(yt|xt,yt−q; θ) =
e−µtµytt
yt!

, (8)

yt = 0, 1, 2, . . . ; k = 1, 2, . . . , t− 1,

where the set of parameters is given by θ = {µt}, µt ∈ R+, ∀t, since the

Poisson distribution is fully characterised by one parameter. Although it is a

strong assumption to specify the entire distribution of the dependent variable

explicitly, the gain is to obtain a positively skewed conditional probability mass

function which might be appropriate for modelling problems such as emergency

patient arrivals. By recognising that the Poisson distribution is a one parameter

distribution, it becomes clear, that there is only one possibility to introduce

a regression model, that is, to model the mean or intensity parameter µt of the

distribution. The intention is, that explanatory variables influence the dependent

variable through the intensity parameter (Winkelmann 2008, pp. 64), which is

most commonly specified as

µt = exp(x′tβ + y′t−q ρq), (9)

where for k being the number of regressors including a constant, β is a k × 1

parameter vector and ρq is a a × 1 vector containing autoregressive parameters

of lag order q for a number of a lagged values of y included in the model. This

implies a set of parameters θ = {β,ρq}. Since one condition for a suitable model

of emergency patient arrivals is, that it produces non-negative outcomes, the

exponential of the right-hand term in (9) is taken. From the properties of the

Poisson distribution in chapter 3.1.1 it can be seen, that (9) also implies

E[yt|xt,yt−q] = µt = exp(x′tβ + y′t−q ρq), (10)
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which is known as an exponential or log-linear mean function, since the log-

arithm of (10) is linear in the parameters β and ρq. The interpretation of the

parameters - or regression coefficients - will not be discussed in further detail

here, because it is of no primary interest for the forecasting purpose. Neverthe-

less, some remarks can be found in Appendix A. Note, that Cameron and Trivedi

(2013, p. 281) advise caution when including lagged values of the dependent

variable in the mean function, because ρq > 1 implies ρqyt−q ≥ 0 which might

result in an explosive model.

An additional remark has to be made with regard to the inherent notion of

equidispersion in the Poisson distribution mentioned earlier. This notion implies,

that in the Poisson regression model, the conditional mean equals the conditional

variance, E[yt|xt,yt−q] = V ar(yt|xt,yt−q), a situation, which arises seldom in ap-

plied econometrics. The Poisson regression model might therefore be inappropri-

ate and too restrictive when data is observed to be overdispersed. Cameron and

Trivedi (2013, pp. 74) present an alternative way for model specification in cases

where overdispersion is an issue. One possible way is to model the conditional

variance as a function of the mean, which remains specified as in (9). The most

common specification is known as Negbin II variance function, given by

V ar(yt|xt,yt−q) = µt + α−1µ2t , (11)

where α is the dispersion parameter which needs to be estimated separately.

The case where α is found to be statistically different from zero is considered as

a test for overdispersion. This setting requires a different regression framework

than the one presented in (8) through (10), allowing for two parameters, µt and α.

In order to set up this framework, the expression in (5) is converted into a mean

parametrisation αλ = µt (Winkelmann 2008, p. 21). The dependent variable yt

is then assumed to be distributed negative binomially given the k × 1 vector of

regressors xt and lagged values yt−q with probability mass function

f(yt|xt,yt−q;θ) =
Γ(α+ yt)

Γ(α)Γ(yt + 1)

(
α

α+ µt

)α( µt
α+ µt

)yt
(12)

t = 0, 1, . . . , T ; y = 0, 1, 2, . . . ,

where it holds now that θ = {µt, α} and the other elements of the equation

have the same interpretation as given in (4) and (9), respectively. This Negbin

II regression model is more flexible when it comes to model overdispersed data,

since the conditional variance must not necessarily equal the conditional mean.

However, the regression models are obviously nested, because for α = 0 the

Negbin II model equals the Poisson model, which is why above derivation of

11



the Negbin II model is referred to as Poisson-gamma mixture interpretation (for

details see Cameron and Trivedi 2013, pp. 117). Since the conditional mean of

the Negbin II model equals the specification given in (10), the same caution has

to be given to the autoregressive coefficients being less than one.

3.2 Estimation and Diagnostics

Just as all econometric models do, the Poisson and Negbin II model refer to

some unobserved data generating process, but rely in fact on a sample of ob-

served data, in the case of this study on emergency patient arrival counts. Pa-

rameters which are used in the specification of the models therefore have to be

estimated, first and foremost the k × 1 and a × 1 coefficient vectors β and ρq

as well as the dispersion parameter α in the Negbin II model. Since the condi-

tional mean of both models is specified as a non-linear function in (10), Ordinary

Least Squares (OLS) estimation cannot be applied. The standard estimator is

obtained by maximum likelihood (ML) estimation, which will be referred to as

maximum likelihood estimator (MLE) from now on (Cameron and Trivedi 2013,

pp. 22), another way to obtain parameter estimates is quasi-maximum likelihood

(QML) estimation, resulting in the quasi-maximum likelihood estimator (QMLE)

(Cameron and Trivedi 2013, pp. 72).

3.2.1 Maximum Likelihood Estimation

Since the present paper partly uses ML estimation to obtain parameter esti-

mates for the model of emergency patient arrivals and heavily relies on the entire

ML framework, some basic theory will be presented in the following paragraph.

A comprehensive and very thorough presentation of ML theory along with exam-

ples involving models for counts is given in Martin et al. (2013). A necessary step

to obtain the MLE of the model’s parameters is to define the model’s joint prob-

ability mass function which utilises all information available from t = 0, 1, . . . , T

(Martin et al. 2013, pp. 9). In doing so, it is important to take into account the

specific nature the data generating process is assumed to have. As a direct impli-

cation of (10), the data generating process is assumed to depend on its own lags

and the time series of explanatory variables {x1, . . . ,xT } for the present applica-

tion. Following again Martin et al. (2013, pp. 11, eq. 1.7), the joint probability

mass function for this situation is given by

f(y1, . . . , yT |x1, . . . ,xT ;θ) =

f(y1|x1;θ)

T∏
t=2

f(yt|yt−1, . . . , y1,xt,xt−1, . . . ,x1;θ), (13)

where θ ∈ Rq is a q×1 vector of parameters to be estimated, so that θ = {β,ρq}
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for the Poisson and θ = {β,ρq, α} for the Negbin II model (Cameron and Trivedi

2013, pp. 23). Now, the intuition of ML estimation is the inverse interpretation

of the joint probability mass function in (13): f(·) is a function of θ for given

yt, because the time series {y1, . . . , yT } is regarded as being already realised and

therefore non-stochastic. The task becomes then to estimate the value θ “which is

‘most likely’ to have generated the observed data” (Martin et al. 2013, p. 12). For

that purpose, the average log-likelihood function ln LT (y1, . . . , yT |x1, . . . ,xT ;θ)

is generally defined as

ln LT (θ) =
1

T
ln f(y1|x1;θ)

+
1

T

T∑
t=2

ln f(yt|yt−1, . . . , y1,xt,xt−1, . . . ,x1;θ), (14)

where, for reasons of brevity, θ now is the only argument (ibid.). Note, that

for the modelling problem at hand, this expression cannot be simplified, since

restrictive assumptions such as the dependent variable being independent and

identically distributed are avoided. The MLE θ̂ML of θ0 is defined as the value

maximising the average log-likelihood function in (14), θ̂ML = argmax LT (θ),

which in some cases can be achieved by standard calculus (ibid.). However, for

the case of the Poisson and Negbin II model, the first-order conditions obtained

by differentiating the average log-likelihood function once with respect to the

unknown parameters, are non-linear and therefore provide no analytical solution

to calculate parameter estimates (Cameron and Trivedi 2013, p. 23).

Another shortcoming of non-linearity is a lack of analytical results with regard

to small sample properties of θ̂ML (Winkelmann 2008, p. 80). Given the so-

called regularity conditions (for details see Cameron and Trivedi 2013, pp. 25)

hold, at least asymptotic properties can be derived. Namely, these properties

are asymptotic efficiency and consistency, as well as approximate asymptotic

normality with mean θ0 and variance VML[θ̂ML], θ̂ML
a∼ N(θ0,VML[θ̂ML]), which

are derived in Martin et al. (2013, Ch. 2) for the general case and in Cameron

and Trivedi (2013, pp. 25) as well as Winkelmann (2008, pp. 80) for count data

models. In each of these monographs it is stated along with the derivations, that

the results require a correctly specified density - i.e. probability mass function

- in the sense that asymptotic consistency means, that the MLE converges in

probability to the parameter vector θ0 of the data generating process, θ̂ML
p→ θ0.

This implies, that the observations {y1, . . . , yT } must necessarily follow a Poisson

or negative binomial distribution defined in (8) and (12), respectively. It turns

out, that correct specification of the entire joint probability mass function is the

price which is to pay for the useful properties of the MLE.
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3.2.2 Quasi-Maximum Likelihood Estimation

It is due to its own restrictiveness, that the assumption of a correctly specified

probability mass function made in ML estimation is often violated in practice.

For instance, in the Poisson regression model, one very common deviation from

probabilistic assumptions which can be found in real data is the presence of

overdispersion, with conditional variance exceeding the conditional mean. For

this case, Cameron and Trivedi (2013, pp. 70) propose different ways to con-

tinue: Obviously, it is an option to work with a better parametric model, namely

the Negbin II instead of the Poisson model, where it is possible to model overdis-

persion via the conditional variance explicitly. This procedure, however, is also

carried out within the ML framework and requires correct specification of the

joint negative binomial probability mass function. Another option, known as

quasi-ML (QML) estimation, is to continue with the misspecified Poisson model

within the ML framework which is then valid under less restrictive assumptions

than the standard ML approach. Again, Martin et al. (2013, Ch. 9) provide a

very thorough discussion of this issue, applications to count data models can be

found in both Cameron and Trivedi (2013, pp. 70) and Winkelmann (2008, pp.

87).

Given, that the joint probability mass function of the model, as expressed in

(13), is misspecified, the log-likelihood function likewise is. Maximising this func-

tion as described in the previous section leads to the QML estimator (QMLE),

denoted as θ̂QML. Building upon work originally conducted by Gourieroux et al.

(1984), Cameron and Trivedi (2013, pp. 31) point out, that, regardless of the

true data generating process for the dependent variable, the QMLE is consis-

tent, θ̂QML
p→ θ0, as long as the assumed probability mass function belongs to

a certain family of distributions and the conditional mean in (10) is correctly

specified. Although justification and derivation of the assumptions lie well be-

yond the scope of this paper, the importance of the result for applied work has

to be stressed: Using QML estimation leads to consistent parameter estimates

without the requirement of complete and correct specification of the joint proba-

bility mass function, that is, the true data generating process must not follow a

equidispersed Poisson distribution.

So far, it has been stated that the MLE of a correctly specified model approxi-

mately follows a normal distribution, if the sample is large enough. Albeit being

a consistent estimator for θ0, this statement is not necessarily true for the QMLE,

which results in wrong inferences due to underestimated standard errors, if the

ML variance matrix - which is based on the assumption of equidispersion - is used

(Winkelmann 2008, pp. 91). Again, under the assumption of a correctly specified

conditional mean function, the problem of inference within the QML framework

14



can be solved by applying robust or Eicker/Huber/White standard errors1. In

a nutshell, the aim is to adjust the “wrong” ML variance matrix for possible

overdispersion, which can be achieved by deriving a consistent estimator for the

conditional variance which, in turn, is the crucial part of the original ML vari-

ance matrix (for a more detailed treatment of robust estimation see Winkelmann

2008, pp. 91 and Cameron and Trivedi 2013, p. 73). Combining the consis-

tently estimated conditional variance and the QMLE’s consistency, this results

in θ̂QML being approximately normal with mean θ0 and adjusted variance matrix

VQML[θ̂QML], θ̂QML
a∼ N(θ0,VQML[θ̂QML]) (Cameron and Trivedi 2013, p. 73).

Cameron and Trivedi (2013, p. 71) also state, that for most applications Pois-

son QML estimation as presented in this section, or Negbin II ML estimation as

presented in the previous one, are sufficient in terms of flexibility to capture pos-

sible overdispersion. This is why the present study also relies on these estimation

techniques and does not discuss further options.

3.2.3 Postestimation

Even though it is not the purpose of this paper to identify and explain causal

relationships driving the number of emergency arrivals, but to forecast them as

precisely as possible, some attention has to be drawn to statistical inferences made

upon parameter estimates. This stems from the fact, that regression coefficients

which do not differ from zero on a predetermined level of significance α, are

dropped from the model which serves as a forecasting tool afterwards. This

level of significance is chosen to be α = 0.05 in the present study, testing for

significance of single coefficients is performed using the usual t-test with test

statistic β̂k/se(β̂k), where β̂k is an estimated regression coefficient from the k× 1

vector β̂ and could also be replaced by an estimated autocorrelation coefficient

from the vector ρ̂t−q (for a detailed presentation of the t-test see Wooldridge

2013, pp. 120). This postestimation procedure is completely analogue to the

standard procedure within the classical linear regression model. Still, there are

other issues which differ considerably and therefore have to be given particular

attention, especially the analysis of regression residuals.

For a linear regression model, the regression residual is defined in a straight-

forward way as the difference between fitted and observed values (Cameron and

Trivedi 2013, p. 178). However, several assumptions have to be made to obtain

residuals having the desirable properties of being normally distributed with mean

zero and constant variance one. Homoskedasticity is one of them, stating that

the residual variance stays constant across all observations in the sample. This

assumption is not fulfilled for the standard residuals - the so-called raw resid-

uals - from the Poisson or Negbin II model, which are heteroskedastic even in

large samples (Cameron and Trivedi 2013, p. 179). To correct for this feature of

1 Named after mathematical statisticians Friedhelm Eicker, Peter J. Huber and econometrician
Halbert J. White.
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count data models, different residuals which make different adjustments to the

raw residuals have been developed. In this study, the exclusive focus is on the

Pearson residual, defined as

zt =
(yt − µ̂t)√

ω̂t
, (15)

where yt is the observation in period t, µ̂t is the estimated conditional mean

specified according to equation (10) and ω̂t is an estimate of the variance ωt

of yt, which means that the denominator consists of the standard error se(µ̂t)

(Cameron and Trivedi 2013, p. 179). So, from above it follows that for the

Poisson model ωt = µt and for the Negbin II model ωt = µt + α−1µ2t . Obviously,

the standard error in the denominator is what distinguishes the Pearson from the

raw residual and it serves as a correction for heteroskedasticity, in order to yield

properties which come as close as possible to the desired symmetric distribution

with zero mean and variance equal to one. And the Pearson residual indeed shows

at least two of these properties, having zero mean and a constant variance of one

in large samples, but being asymmetrically distributed at the same time (ibid.).

When the residuals are obtained within the estimation step of the modelling

procedure in chapter 4, they are checked for the two properties mentioned first.

Additionally, they help to assess the model specification: Since it is one feature of

a sophisticated forecasting model to capture a maximum of the dependence that

can be seen in the time series of the data by inspection of the autocorrelation

function, no dependence should be left in the regression residuals after fitting the

model. More technically, the Pearson residuals will be uncorrelated in the first

two moments and E[zt] = 0, E[z2t ] = 1, if the model is correctly specified (see for

example Jung et al. 2006, p. 2360, Liesenfeld et al. 2008, p. 190).

A test for serial correlation which is regularly used for ARIMA modelling,

but asymptotically also valid for count data models, when residuals fulfill above

assumptions, is the so-called Ljung-Box portmanteau test (Cameron and Trivedi

2013, p. 270). It is based on the autocorrelation function, which was already

defined above for observed values and their lags, and is now set up using the

Pearson residuals in (15):

ρ̂q =

T∑
t=q+1

zt zt−q

T∑
t=1

z2t

. (16)

The autocorrelation coefficient is now marked as an estimated parameter, be-

cause the Pearson residuals are obtained after fitting an appropriate model (ibid.).
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The denominator simplifies compared to equation (7), because the residuals are

assumed to be homoskedastic for a correctly specified model. The test evaluates

whether either the autocorrelation coefficients up to a predetermined lag order k

are jointly equal to zero, H0 : ρq = 0, q = 1, . . . , k, or at least one coefficient is

statistically different from zero. In order to do so, the Ljung-Box test statistic is

defined as

TLB = T (T + 2)
k∑
q=1

1

T − q
ρ̂2q (17)

which, under H0, is asymptotically χ2(k) (Cameron and Trivedi 2013, p. 270).

A level of significance α = 0.05 is considered as the benchmark when testing for

serial correlation, as for the t-test mentioned earlier.

In addition to the model evaluation based on single observations using the

Pearson residual, overall performance of the model is of interest, especially when

it comes to compare competing models. A commonly used tool for this purpose

is the Pearson statistic which is based on the Pearson residuals and serves as

a measure for the goodness-of-fit of the model (Cameron and Trivedi 2013, pp.

188). The Pearson statistic is essentially a weighted sum of residuals, given by

P =
T∑
t=1

(yt − µ̂t)2√
ω̂t

, (18)

where all elements of the equation are defined as for the Pearson residual above

(ibid.). This statistic is a helpful tool for both the Poisson and the Negbin II

model to assess their specification and to detect possible overdispersion. For a

well specified model and under the assumption of a correctly specified mean, it

holds that P = n − k, whereas P > n − k and P < n − k indicate over- and

underdispersion, respectively2 (ibid.). Note, however, that given the assumption

of a correctly specified mean, P 6= n− k can either indicate a misspecification of

the distributional assumptions or the mean itself (Winkelmann 2008, p. 119).

Two further criteria for model evaluation and comparison of non-linear models

should not be neglected, namely the Akaike information criterion (AIC) and

the Bayesian information criterion (BIC). Having in mind, that a forecasting

model should include as much information as possible from the original time series

and be parsimoniously parametrized at the same time, these information criteria

provide a quantification of this trade-off (González-Rivera 2013, pp. 212). The

2 This stems from the properties of the Pearson residual: For correct specification, E[(yt −
µt)

2/ωt] = 1, which implies E[
∑T

t=1(yt − µt)
2/ωt] = n. The degrees of freedom adjustment

(n− k) is made, because in practice µt has to be estimated (Winkelmann 2008, p. 119).
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intuition behind the criteria is, that on the one hand, an increase in the number

of parameters k in the model improves its goodness-of-fit, since more information

can be captured, but violates the principle of parsimony on the other hand.

Translating this intuition into equations yields

AIC =
2k

T
+ ln

T∑
t=1

z2t

T
(19)

BIC =
k

T
ln T + ln

T∑
t=1

z2t

T
, (20)

where zt is the Pearson residual defined in (15) and T is the number of ob-

servations (González-Rivera 2013, pp. 212). The first term of both criteria is

a penalty term which penalises each parameter that is added to the model, the

second term includes the residual sum of squares which is assumed to decrease

as parameters are added to the model, so that both terms counterbalance each

other. The decision rule is to choose the model with the smallest AIC or BIC

among the competing models. Both criteria have different optimality properties

and there is no consensus of preferring one over the other, so both are taken into

account in this paper (ibid.).

18



3.3 Model-based Forecasting

After this review concerning the present and basic statistical methods deal-

ing with it, this section treats the future and the therefor appropriate statistical

method, which is model-based forecasting. Following the definitions given above,

the aim of model-based forecasting is to construct a forecast, ft,h, for some fu-

ture realisation yt+h of the stochastic process {Yt}Tt=1 by exploiting all information

available up to time t, It = {y1, y2, . . . , yt,x1,x2, . . . ,xt}, which is called a multi-

variate information set (González-Rivera 2013, p. 73). This forecast is therefore

defined as a function g(·) of the information set,

ft,h = g(It), (21)

where g(·) is a function of conditional moments (ibid.). Since this paper tries

to forecast the number of emergency arrivals, which is modelled in terms of a re-

gression framework and hence in terms of the conditional mean, g(·) is a function

of the conditional mean and so is the forecast. Then, (21) can be rewritten as

ft,h = g(It) = E[Yt+h|It] = E[Yt+h|y1, y2, . . . , yt,x1,x2, . . . ,xt] (22)

and it turns out that this is an expression well calculable using the specification

in (10):

E[yt|xt,yt−q] = exp(x′tβ + y′t−q ρq)

ft,h = E[Yt+h|xt,yt+h−q] = µt+h|h = exp(x′tβ + y′t+h−q ρq). (23)

Thus, just as the conditional mean is a log-linear function of regressors and

lagged dependent variables, the forecast is a log-linear function of past observa-

tions which is necessary for applying the standard forecasting theory presented

in Hamilton (1994, Ch. 4). Additionally, (23) implies, that Poisson and Neg-

bin II models yield the same forecast, since their conditional mean is specified

in the same way. For obvious reasons, the forecast error is defined using (23)

as the difference between the actual observation at time t + h and the forecast

(González-Rivera 2013, p. 11),

et,h = yt+h − ft,h. (24)

Clearly, even given the information in (24), no statement about the usefulness
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of the theoretical forecast in (23) is possible so far. To be able to assess and

compare different forecasts, some additional choices have to be made a priori,

that is before constructing the forecast (González-Rivera 2013, p. 79).

First, the nature of the information set has to be clarified, whether it is uni-

variate or multivariate, quantitative or qualitative, because the forecast is always

a function of this information set as pointed out in (21) (González-Rivera 2013,

pp. 80). Second, the forecast horizon must be predetermined, that is, whether

a one-step ahead forecast, ft,1, or a multi-step ahead forecast, ft,h, h > 1, will

be constructed. Another differentiation would be according to long-, medium-,

or short-term forecasts, however, this strongly depends an the frequency of the

data3 (González-Rivera 2013, pp. 84). Related to the issue of the forecast hori-

zon is the choice of a forecasting environment. Since it is impossible to observe

the future t+ h at time t, where the forecast is constructed and its performance

has to be assessed, the sample of observations {y1, y2, . . . , yT } is divided into

an estimation sample, {y1, y2, . . . , yt}, which is used to estimate the economet-

ric model and a prediction sample, {yt+1, yt+2, . . . , yT }, which is used to assess

the forecast performance. This makes it possible to calculate the forecast error

as given in (24) which is known as out-of-sample assessment (González-Rivera

2013, p. 86). The forecasting literature distinguishes three different forecast-

ing environments, namely the recursive, the rolling and the fixed (for a detailed

discussion see González-Rivera 2013, pp. 86). Using the recursive forecasting

environment, the model is estimated inside the estimation sample up to time t

and the forecast, for example ft,1, is made for t + 1 afterwards. Subsequently,

the estimation sample is expanded until t+ 1, the model is estimated again and

the one-step ahead forecast is constructed for t + 2. This procedure continues

until no observations are left in the prediction sample. In general, the recur-

sive forecasting environment is advantageous, because it uses the maximum of

information to estimate the model. However, its validity relies on the stability

of the model over time (ibid.). Since this is a reasonable assumption for a model

of emergency arrivals, this forecasting environment is applied in the practical

part of this study. Note, that producing forecasts using the recursive scheme

also leads to a series of out-of-sample forecast errors, in the example of one-

step ahead forecasts {et,1, et+1,1, . . . , et+j,1, . . . , eT−1,1} or, for the general case,

{et,h, et+1,h, . . . , et+j,h, . . . , eT−h,h}. These series can be assessed by computing

the sample average loss, which can be expressed by different measures (González-

Rivera 2013, p. 239 presents the most common measures). For reasons which

will be pointed out in an instant, the sample average loss in this paper is assessed

3 Think, for example, of the difference between quarterly reported data on the gross domestic
product and stock market data which is nearly continuously reported every fraction of a
second.
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by using the Mean Squared Error (MSE), defined as

L̄ =

T−h−t∑
j=0

e2t+j,h

T − h− t+ 1
≡ MSE, (25)

and the root mean squared error, RMSE =
√

MSE. The model producing

forecasts with the smallest MSE will be preferred to possible alternatives. An-

other possibility to evaluate the performance of forecasts is the concept of a loss

function (González-Rivera 2013, pp. 89). This is the last a priori choice to

be made by the forecaster. A loss function L(et,h) is defined as “the evalua-

tion of costs associated with the forecast errors” (González-Rivera 2013, p. 90),

or, in everyday language, “how concerned we are if our forecast is off by a par-

ticular amount” (Hamilton 1994, p. 72). Regardless of the functional form of

L(et,h), every loss function must satisfy three conditions which are also presented

in González-Rivera (2013, pp. 90):

• et,h = 0 → L(et,h) = 0

• et,h 6= 0 → L(et,h) ≥ 0, min L(et,h) = 0

• if e
(1)
t,h > e

(2)
t,h > 0 → L(e

(1)
t,h) > L(e

(2)
t,h)

if e
(1)
t,h < e

(2)
t,h < 0 → L(e

(1)
t,h) > L(e

(2)
t,h).

Expressing these conditions in words, the loss function is a non-negative func-

tion, which takes on its minimum value zero when the forecast equals the observed

value and is monotonically increasing for positive and monotonically decreas-

ing for negative errors, respectively. It is up to each forecaster to specify her

loss function according to her own preferences and various examples for imagin-

able loss functions exist (again, a very comprehensive treatment is provided in

González-Rivera 2013, pp. 91). Albeit being the most unrealistic specification

of a loss function in the majority of applications, the quadratic loss function

L(et,h) = a e2t,h, a > 0 is the most widely used, because it can be handled very

conveniently from a mathematical point of view (Hamilton 1994, pp. 72). Verbal-

ising this definition, it can be said that the sign of the forecast error is irrelevant,

since it is squared and therefore non-negative, which is necessary to fulfill the

first and the second condition above. Additionally, and this is the crucial as-

sumption made by using a symmetric loss function, forecast errors of the same

magnitude are weighted equally, regardless whether they are positive or negative

(González-Rivera 2013, pp. 91).
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3.3.1 Optimal Forecasting

With the a priori choices of the information set, the forecast horizon and

environment, and especially the loss function being made, it is possible to derive

the optimal forecast, denoted by f∗t,h. González-Rivera (2013, pp. 93) illustrates

an intuitive and basic derivation, a more general, yet technically more involving,

derivation can be found in Hamilton (1994, p. 73). The former is explicitly

presented below, since some remarks have to be made on the case of a discrete

probability mass function like the Poisson or the negative binomial.

From the definition of the forecast error in (24) and under the assumption of

symmetric loss, the loss function can be written as

L(et,h) = L(yt+h − ft,h) = a e2t,h , (26)

where yt+h is a future realisation of some random variable Yt+h. Now, whereas

González-Rivera (2013, p. 94) assumes this random variable to have a normal

conditional density, this is not the case in this study, where the emphasis is on

models for count data and the conditional density f(yt+h|xt,yt−q;θ) has to be

expressed in terms of expressions (8) and (12). In any case, Yt+h being a random

variable with unknown realisation yt+h leads to L(·), which in turn is a random

variable as well. That makes it possible to examine its statistical moments, where

the expected loss is of particular interest (ibid.). For the case of a discrete random

variable Yt+h, the expected loss can be expressed as

E[L(yt+h − ft,h)] =

∞∫
0

L(yt+h − ft,h) f(yt+h|xt,yt−q; θ) (27)

and it turns out, that this is nearly the same expression as presented in

González-Rivera (2013, p. 94) for the continuous case. This stems from the

fact, that the loss function is a function of the difference between the future re-

alisation yt+h, which is a count for a discrete probability distribution, and the

forecast ft,h, which can be expressed as a conditional mean specified within a

regression framework as shown in (23). Thus, the same domain as for the con-

ditional mean applies to the forecast and it is ft,h ∈ R+. This implies, that the

outcome of the loss function is continuous as well and standard rules of integration

and differentiation can be applied. The optimal forecast is now defined
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as the forecast which “minimises the expected loss” (González-Rivera 2013, p.

94),

min
ft,h

E[L(yt+h − ft,h)]. (28)

The minimisation problem can be solved by plugging in the quadratic loss

function from above and using simple rules of differentiation which can also be

found in González-Rivera (2013, p. 94) and is not repeated here. It turns out,

that the optimal forecast equals the conditional mean of yt+h,

f∗t,h = E[Yt+h|xt,yt+h−q] ≡ µt+h|t. (29)

It has to be stressed, that this expression heavily depends on the choice of the

loss function and is therefore only valid for the quadratic loss function. Further-

more, it becomes obvious now, why the (R)MSE is used in this paper to assess the

sample average loss, because it is closely related to the definition of the quadratic

loss function: While the optimal forecast minimises the expected loss as shown

in González-Rivera (2013, p. 94), this is also true for the (R)MSE as shown in

Hamilton (1994, p. 73).

3.3.2 Constructing and Evaluating Density Forecasts

Until now, only so-called point forecasts were discussed, where the forecast

returns a single value which is considered as a prediction for a future realisation

of a random variable (González-Rivera 2013, p. 12). Point forecasts are in general

valuable in giving a rough idea of how a time series might develop in the future, yet

they do not provide any measure of probability on how likely it is that the forecast

in fact equals the observed future value. There is more information which can be

provided and which is particularly valuable for practitioners. One way to do so is

the construction of density forecasts, exploiting the fact that the time series which

is forecast is assumed to be governed by a stochastic process, that is, a collection

of random variables, where each of them possesses its specific probability mass

function. Hence, the density forecast is defined as the probability mass function

of Yt+h conditional on the information set It, ft,h(Yt+h|It) (ibid.). This definition

indicates, that, albeit leading to the same point forecasts, the Poisson and the

Negbin II model yield different density forecasts.

For the Poisson model, the density forecast is easily obtained: As pointed out

in the last section, the optimal forecast under quadratic loss is the conditional

mean µt+h|t, which is also the parameter governing the conditional probability

mass function of the Poisson model. The Poisson density forecast can then be
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written as

ft,h(Yt+h|xt,yt+h−q;θ) =
e−µt+h|tµytt+h|t

yt!
, (30)

where now θ = {µt+h|t}. For the Negbin II model, the density forecast is

obtained in a similar way, using the probability mass function in (12) and plugging

in µt+h|t, which yields

ft,h(Yt+h|xt,yt+h−q;θ)

=
Γ(α+ yt+h)

Γ(α)Γ(yt+h + 1)

(
α

α+ µt+h|t

)α( µt+h|t

α+ µt+h|t

)yt+h

. (31)

So, by constructing the density forecast, an entire probability distribution of

possible future outcomes is estimated and the entire forecast uncertainty is de-

picted (Tay and Wallis 2000, p. 236). Again, just as point forecasts, density

forecasts have to be assessed in order to choose the model with the best pre-

dictive ability. However, while there exists a rich literature on evaluating point

forecasts, this is not the case for the evaluation of density forecasts (Diebold et al.

1998, p. 863). In this study, a very straightforward approach to reach the objec-

tive is used. The strategy is to borrow from the econometric field of kernel density

estimation, where different measures for the global performance of estimated den-

sities have been developed in the literature. For a density forecast ft,h(Yt+h|It)
and a true density at time t+h, ft+h(yt+h|xt,yt+h−q), a commonly used measure

of global performance is the Mean Integrated Squared Error (MISE), defined as

MISE(ft,h) =

∞∫
−∞

{ft,h(z)− ft+h(z)}2π(z)dz, (32)

where z are the arguments of the probability density functions which are de-

fined for the real numbers and π(z) is a weight function which is set equal to

one from now on (Tenreiro 1998, p. 134). This measure can be seen as the

counterpart of the MSE for estimated and forecasted densities. However, for the

application to the density forecasts of discrete probability distributions, the MISE

is inappropriate, since it relies on continuous integration over the real numbers.
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Wegman (1972, p. 228) presents a discrete version of the MISE, the Average

Square Error (ASE), given by

ASE =
1

N

N∑
n=1

{ft,h(z)− ft+h(z)}2, (33)

where integration is replaced by summation over the positive integers and z

is the argument of the density functions, which can now be replaced by discrete

probability mass functions (ibid.). This easily-computable measure returns the

average squared deviation between the density forecast and the assumed true

density, so
√
ASE returns the average absolute deviation. When comparing the

predictive ability of different forecasting models for emergency arrivals below, the

ASE for each density forecast ft,h(Yt+h|It) in the prediction sample is computed

and the overall mean of the ASEs is reported as a measure ASE to evaluate the

predictive ability of a forecasting model. Naturally, the model with the smallest

ASE will be preferred over alternative models to forecast the emergency arrivals

of a certain priority.
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4 Practice: Modelling the Arrival Counts

Having set the stage by discussing the theoretical framework for the present

study, this section makes the attempt to apply this framework to a dataset of

emergency arrivals in order to develop a model which helps to predict future

arrivals. As outlined in the introduction, the procedure is divided into three

stages and follows the approach for ARIMA modelling and forecasting presented

in González-Rivera (2013, p. 202):

• The data: source, definition, descriptive statistics and autocorrelations.

• The model: estimation, evaluation and selection.

• The forecast: selection of a loss function and construction of the forecast.

All statistical analyses were processed using the software package Stata, release

13.

4.1 The Data

The data under consideration is a sample provided by the emergency depart-

ment of a hospital in Brandenburg, Germany, and reaches from 1st January 2013

until 30th September 2014 (638 days) on a minute-by-minute basis which gives

a total of 61,193 arrivals. Additionally, each emergency patient is assigned to

one out of four groups according to the time which is allowed to elapse before

medical treatment for the patient starts. These groups can be considered as an

approximation of a patient’s acuity level and are defined as

• priority 1 (P1): immediately,

• priority 2 (P2): < 30 minutes,

• priority 3 (P3): < 60 minutes and

• priority 4 (P4): < 120 minutes.

In order to develop a forecasting model which produces predictions on a daily

basis, emergency arrivals belonging to the same date were aggregated to generate

a time series with N = 638 observations, equal to the number of days T in

the sample. This procedure was performed for the time series of each single

priority, so in total four distinct time series were generated. To enable an out-

of-sample evaluation of forecasts, the sample was divided into the estimation

and the prediction sample. Following the recommendations in González-Rivera

(2013, p. 231), the initial division was made at 31st July 2014, so that 577

observations remained in the estimation sample, whereas 61 observations - or

9.56% - of the entire sample were left in the prediction sample. Table 1 illustrates
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overall P1 P2 P3 P4

Mean 95.54 5.08 53.68 33.94 2.84
Median 95 5 54 33 2
Minimum 61 0 31 10 0
Maximum 147 13 104 65 16
Variance 197.92 6.07 94.25 76.67 5.67
Skewness 0.46 0.46 0.50 0.34 1.5
N 577 577 577 577 577

Table 2: Descriptive statistics for the time series of emergency arrivals

descriptive statistics for the estimation sample of each time series, revealing that

P2 and P3 account for the majority of emergency arrivals, while the proportion

falling into P1 and P4 is relatively small. Remarkably, all series are positively

skewed, which points towards the application of models based on the probability

distributions presented earlier. Also striking is the fact, that for all time series

the unconditional variance exceeds the unconditional mean, which can serve as a

first indicator for possible overdispersion in the data.
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Figure 2: Time series of emergency arrivals

Graphical inspection of the time series depicted in Figure 2 shows, that they

are not trending over time, but reveal some sort of cyclical behaviour with a

higher number of arrivals in summer, visible as smooth waves in the time series.

The existence of a seasonal pattern coincides with other results presented in the

literature and discussed in chapter two, however, these results point towards a

peak during the winter months and less emergency arrivals in summer. This
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opposite finding might at least partly stem from the fact, that there are several

swimming lakes located in striking distance of the hospital, where swimming

accidents can occur during the summer months. A weekly cycle or day of the

week effect, another result presented by already existing investigations, cannot

be found thoroughly in the sample. Although the overall time series and also P2

reveal a weekly cycle to some extent, visible as zigzag movement of the time series

with many spikes, there is only weak evidence for this result from the graphs of

P1, P3 and P4.

Following the approach of McCarthy et al. (2008), the raw autocorrelation

inherent in the time series is calculated using the formula for the ACF from

above, up to the emergency arrivals 28 days ago. The results are depicted in

the form of autocorrelograms in Figure 3, where the grey areas correspond to

the 95 %-confidence interval of the estimated autocorrelation coefficient ρ̂q, the

magnitude of the coefficient is shown on the ordinate and the lag-order q is shown

on the abscissa.
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Figure 3: Raw autocorrelation functions

It becomes evident, that there exists a dependence structure in the time series

and again, this is especially the case for P2 and P3, whereas the autocorrelation

coefficients for P1 and P4 are both less pronounced and rather borderline signif-

icant. The time series P2 and P3 exhibit stronger autocorrelation, in particular

for the lags q = 1, 7, 14, 21, 28 which are - except for P2, q = 21 - entirely dif-

ferent from zero. This in fact points towards a weekly cycle in the emergency

arrivals, where there is some correlation between arrivals of a specific day of the
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week and the arrivals seven days apart, which obviously is the same day of the

week. Another observation from the autocorrelograms are the exclusively posi-

tive autocorrelations between present emergency arrivals and those several days

apart.

To pick up the idea brought up above, the positively skewed distributions of

emergency arrival counts are compared to the Poisson and the negative binomial

distribution, respectively, to gain a first insight of whether these probability dis-

tributions can appropriately fit the data. For that purpose, the distribution of

emergency arrivals for each priority is depicted as a blue line in Figure 4, along

with the corresponding Poisson (green line) and negative binomial distribution

(red line). The abscissae show the emergency arrival counts and on the ordi-

nates the respective proportion is shown, that is, the fraction of days on which

this exact number of emergency arrivals occurred. Note, that all distributions,

while being of discrete nature, are drawn as if they were continuous for reasons

of comparability.
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Figure 4: Distributions of emergency arrivals compared to Poisson/Negbin
distribution

The graphs show, that the Poisson and negative binomial distribution indeed

capture the distributions of emergency arrivals well for all priorities, which makes

it reasonable to use them as a basis for the forecasting model and to assume the

true data generating process to follow either a Poisson or a negative binomial

distribution. Another hint for the modelling procedure, which has to be taken

into account, is the observation, that particularly for P3 and P4, the negative
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Variable Description

TEMP daily average air temperature (◦C)

TEMPMAX daily maximum air temperature (◦C)

TEMPMIN daily minimum air temperature (◦C)

RAIN rainfall (mm)

SNOW snowfall (cm)

HUM relative humidity (%)

V APRESS vapour pressure (hPa)

DTEMPMAXi variable = 1 for TEMPMAX ≥ i,
i = 0, 10, 15, 20, 30 ◦C, 0 otherwise

DRAINi variable = 1 for RAIN > i, i = 1, 15 mm, 0 otherwise

DSNOWi variable = 1 for SNOW > i, i = 1, 5, 10 cm,
0 otherwise

DV APRESSi variable = 1 for V APRESS ≥ i,
i = 10, 15, 20 hPa, 0 otherwise

Table 3: Climatic variables used for modelling

binomial distribution is closer to the observed data than the Poisson distribution.

To sum up the insights obtained from the raw time series, their graphical

representations and descriptive statistics, few commonalities and a high degree

of heterogeneity between priorities could be found. In general, all time series

are not trending over time, the unconditional variance exceeds the unconditional

mean and the distributions of emergency arrival counts are positively skewed.

However, the priorities differ remarkably with regard to their sheer magnitude,

their cyclicality and their inherent dependence structure. These results make it

reasonable to develop four separate forecasting models, one for each priority, as

suggested by Sun et al. (2009), and build them on grounds of probability models

for count data.

One further step, which has been made to enable econometric modelling using

a regression framework and to provide as much information as possible to verify

results which already exist, was to merge the dataset of emergency arrival counts

with climate data obtained from a meteorological station eight kilometers away

from the hospital (DWD 2015). This dataset with daily observations contains

various climatic variables such as the daily average air temperature, the daily

maximum and minimum air temperature, the relative humidity, the vapour pres-

sure and the amount of precipitation reported for rain and snow separately. To

simplify the modelling procedure and to obtain variables which indicate the ex-

istence or inexistence of a certain event, various binary or dummy variables were

defined. They can be found in Table 2 along with the other climatic variables

used for econometric modelling. The same step of transforming information into
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Variable Description

EA
(i)
t

emergency arrivals for priority i = 1, 2, 3, 4 at time
t = 1, . . . , 577

DiDAY variable = 1 for i = MON, TUE, WED, THU, FRI, SAT, SUN,
0 otherwise

D(af)PH variable = 1 for day being public holiday (day after public
holiday), 0 otherwise

DV AC variable = 1 for day being part of school holidays,
0 otherwise

DMONTH variable = 1 for MONTH = JAN, FEB, MAR, APR, MAY,
JUN, JUL, AUG, SEP, OCT, NOV, DEC, 0 otherwise

DSUMMER variable = 1 for MONTH = JUN, JUL, AUG, 0 otherwise

DWINTER variable = 1 for MONTH = OCT, NOV, DEC, 0 otherwise

Table 4: Further variables used for modelling

variables which can be analysed within a regression framework was also made

with regard to the 577 different dates in the estimation sample. They were char-

acterised by the month in which they fall, their specific day of the week and the

nature of the day, that is, whether it is a public holiday, the day before or after a

public holiday or whether it is part of school holidays. Additionally, the months

June, July and August were used to define a variable which indicates whether

it is summer or not, the same procedure was carried out for October, November

and December being defined as winter. The entire process of defining variables

was performed by creating dummy variables, indicating whether a certain event

is true or not for a specific date in the time series by taking on the values one or

zero (for more information on the use of binary variables see Wooldridge 2013,

Ch. 7). The list of variables other than the ones already presented in Table 2

can be found in Table 3 along with their respective definitions.

4.2 The Model

In order to develop a forecasting model for the emergency arrival counts of the

different priority groups, the conditional means of the Poisson and the negative

binomial distribution are specified in terms of a regression model as shown in the

theoretical part of this paper. That allows to relate the dependent variable EA
(i)
t ,

todays emergency arrivals, to its previous values EA
(i)
t−q and to control for various

effects, for instance seasonality, the day of the week or temperature. The mod-

elling strategy follows a general-to-specific approach as suggested by Dougherty

(2011, pp. 457), starting with the most general model, where both exogenous re-

gressors and lagged values of the dependent variable enter the regression equation

to incorporate as much information as possible and to capture all dependence in

the time series within the specified model, so that the Pearson residuals have
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mean zero, variance one and no serial correlation is left in zt and z2t . Afterwards,

non-significant parameters are dropped from the general model to simplify it if

possible. Before starting the estimation step, some additional remarks seem to

be appropriate: All models are estimated using either Poisson QML estimation

or Negbin II ML estimation and including a constant, so that dummy variables

are given the interpretation of a difference compared to a reference or base group

which is not part of the model (Wooldridge 2013, p. 227). Estimated coefficients

marked as (*) in the following results are statistically significant on the 5%-level,

for coefficients marked as (**) the same is true even on the 1%-level. For the

Ljung-Box portmanteau statistic, TLB, the corresponding p-value is reported in

brackets. For reasons of brevity, the final equation for the forecasting models is

only presented for P1 as an example, because the equations for P2-4 follow ex-

actly the same structure but contain too many parameters in most of the cases.

Note, that for the same reason only the best models among those which were

estimated are presented below. The absence of explosiveness in the models due

to ρq > 1 was tested by plotting the fitted values from the regression and could

be confirmed for all of the models.

4.2.1 Priority 1

As evident from the graphical representations and descriptive statistics of the

time series, the number of patients classified into P1, EA
(1)
t , is rather small,

compared to other priority levels and as a fraction of the overall time series

of emergency arrivals. Additionally, Figure 2 does not indicate strong cyclical

behaviour of the time series, neither on a weekly, nor on a yearly basis and

according to Figure 3, present emergency arrivals of P1 are only weakly correlated

with previous arrivals one and 17 days ago. These observations can serve as a first

indication for the difficulty to predict the outcomes of this series. As suggested

by aforementioned observations, all climatic and monthly predictors from Tables

2 and 3 in fact turn out to have no statistically significant effect on EA
(1)
t , visible

in p-values far above .05. The same holds for the effect of a day being a public

holiday or part of school holidays and the effects of summer and winter. The only

deterministic predictor which could be identified is DMONDAY with a p-value of

.003 < .05. As illustrated in Table 4, EA
(1)
t can also be predicted by its own lags

EA
(1)
t−1 and EA

(1)
t−17, which is the stochastic part of the model, since the lags are

realisations of the random variable EA
(1)
t .

The postestimation procedures reveal, that there is no correlation left in the

regression residuals, visible in the p-value corresponding to the Ljung-Box port-

manteau test of .50, which is far from rejecting the null hypothesis of no serial

correlation. Furthermore, the residuals show the desirable property of a mean

near to zero and a variance close to one. This provides some evidence that the

model is well specified. However, the Pearson statistic is slightly larger than
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Poisson model Negbin II model

EA
(1)
t

Coefficient EA
(1)
t

Coefficient

DMONDAY .1530** DMONDAY .1526**

EA
(1)
t−1 .0175* EA

(1)
t−1 .0176*

EA
(1)
t−17 -.0204** EA

(1)
t−17 -.0207*

constant 1.6147 constant 1.6153

α̂ - α̂ .0343**

zt zt

mean -.0001 mean .0000

std. err. 1.0877 std. err. .4440

TLB 39.1657 (0.50) TLB 40.1397 (0.46)

P/df 1.1895 P/df 1.1895

AIC5 2572.422 AIC 2565.019

BIC 2589.734 BIC 2582.331

Notes: (*) indicates statistical significance on the 5%-, (**) on the 1%-level.

Table 5: Regression results for P1

(n − k), 661.37 > 577 − 17 − 4, which points towards some degree of overdis-

persion4. Even though this does not affect the estimated regression coefficients,

a Negbin II regression model was estimated as well, using QML estimation to

compare the diagnostic results to those obtained from the Poisson model. The

regression residuals for the Negbin II model do not show any correlation and

the information criteria of the models are hardly discriminable. The only visible

difference is the size of the residual variance for the Negbin II model, which is

.44402 = .1971 and therefore closer to zero than to one, where it should be for a

well specified model. After the estimation and evaluation step, there are two pos-

sible model candidates for P1, namely the Poisson or the Negbin II specification,

containing the same parameters - because their conditional means are specified

the same in theory - and resulting in nearly the same diagnostic results. For both

models, the estimated conditional mean with parameter estimates rounded up to

two decimal places is specified as

E[EA
(1)
t |DMONDAY , EA

(1)
t−1, EA

(1)
t−17] = µP1

t

= exp(1.61 + 0.15 ·DMONDAY + 0.02 · EA(1)
t−1 − 0.02 · EA(1)

t−17). (34)

4 Note, that the time series contains 17 dates with EA
(1)
t = 0.

5 Note, that Stata calculates the information criteria according to AIC = −2 ln L(·) + 2k and
BIC = −2ln L(·) + k ln(N).
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This equation will be the basis for constructing forecasts in the next step.

4.2.2 Priority 2

The group of emergency arrivals classified into P2, EA
(2)
t , represents the largest

fraction of the entire time series, its median covers 56.84% of the overall time

series’ median and it exhibits the same wavelike movement with a higher number

of arrivals in the summer months. Additionally, the time series exhibits a rather

pronounced dependence structure with positive autocorrelation coefficients at

lags 1, 7, 14 and 28. This can be an indication towards some weekly seasonality.

All in all, the time series for P2 seems to be better predictable by deterministic

factors and its own lags, than this is the case for P1. Just as in the case of

P1, regression analysis confirms the first impression from analysing descriptive

statistics and graphs: Using a Poisson regression model and Monday as reference

day, there is strong evidence for all days of the week from Tuesday until Sunday

being predictors for EA
(2)
t with p-values practically equal to zero and negative

coefficients, indicating a peak on Mondays, which is consistent with the literature

presented in chapter two. Further predictors are public holidays and the day after

a public holiday, where the former has a negative coefficient, the latter a positive

one, indicating that less emergency patients arrive on public holidays, but more

the day after. Additionally, DWINTER can serve as predictor which states, that

for the months October, November and December less emergency patients arrive

compared to the rest of the year. This confirms the seasonality hypothesised

from the waves in the time series. The autocorrelation hypothesised from the

autocorrelogram is meanwhile confirmed by the estimated regression coefficients

for EA
(2)
t−1, EA

(2)
t−7 and EA

(2)
t−21, which differ all statistically from zero, at least

on the 5%-level and point - just as the day of the week regressors do - towards a

weekly cycle in the emergency arrivals of P2. TEMP was also estimated within

the model, resulting in a very small and positive coefficient, which differs from

zero on the 5%-level and is kept in the model, since it might explain the higher

number of arrivals during the summer. With regard to the evaluation step the

model performs well with no serial correlation in zt, which has a mean close to zero

and variance close to one, and z2t , so the conditional mean seems to be correctly

specified. The only issue is the ratio of Pearson statistic to degrees of freedom,

P/df ≈ 1.48 > 1 which might indicate further overdispersion. To analyse the

effect of the temperature on EA
(2)
t in greater depth, a second Poisson model

was estimated, using the same variables as above, but dropping DWINTER and

replacing TEMP by DTEMPMAX20. The result is an even stronger and positive

effect of the temperature variable on the emergency arrivals as illustrated in Table

5.
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Poisson model 1 Poisson model 2

EA
(2)
t

Coefficient EA
(2)
t

Coefficient

DTUESDAY -.1371** DTUESDAY -.1353**

DWEDNESDAY -.1085** DWEDNESDAY -.1087**

DTHURSDAY -.1589** DTHURSDAY -.1582**

DFRIDAY -.0995** DFRIDAY -.0981**

DSATURDAY -.1491** DSATURDAY -.1467**

DSUNDAY -.1597** DSUNDAY -.1551**

DPH -.1112* DPH -.1052*

DafPH .1938** DafPH .1951**

DWINTER -.0450* DWINTER -

TEMP .0019* TEMP -

DTEMPMAX20 - DTEMPMAX20 .0548**

EA
(2)
t−1 .0027** EA

(2)
t−1 .0027**

EA
(2)
t−7 .0016* EA

(2)
t−7 .0017*

EA
(2)
t−21 -.0027** EA

(2)
t−21 -.0025**

constant 3.9977 constant 4.0004

zt zt

mean .0000 mean .0000

std. err. 1.2034 std. err. 1.2002

TLB 43.4216 (0.33) TLB 45.2666 (0.26)

P/df 1.4829 P/df 1.4724

AIC 4060.688 AIC 4055.455

BIC 4121.178 BIC 4111.625

Notes: (*) indicates statistical significance on the 5%-, (**) on the 1%-level.

Table 6: Regression results for P2 (Poisson models)

For reasons of comparison, two Negbin II models were estimated as well, using

the same parametrisation as the Poisson models for P2, the results are sum-

marised in Table 6. Comparing the parameter estimates of the Poisson and the

Negbin II specification, a difference is hardly visible. However, when looking at

the postestimation results, there is evidence that the Negbin II models might fit

the data better than the Poisson models do. On the one hand, this stems from

the fact, that the estimated dispersion parameter α̂ differs statistically from zero.

On the other hand, the analysis of regression residuals provides even stronger

evidence: For both Negbin II models, they have a mean equal to zero and a

variance equal to one and - most remarkably - the ratio P/df is virtually equal
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Negbin II model 1 Negbin II model 2

EA
(2)
t

Coefficient EA
(2)
t

Coefficient

DTUESDAY -.1377** DTUESDAY -.1359**

DWEDNESDAY -.1085** DWEDNESDAY -.1085**

DTHURSDAY -.1585** DTHURSDAY -.1578**

DFRIDAY -.0996** DFRIDAY -.0979**

DSATURDAY -.1493** DSATURDAY -.1471**

DSUNDAY -.1604** DSUNDAY -.1555**

DPH -.1108* DPH -.1047*

DafPH .1929** DafPH .1946**

DWINTER -.0447* DWINTER -

TEMP .0019* TEMP -

DTEMPMAX20 - DTEMPMAX20 .0551**

EA
(2)
t−1 .0027** EA

(2)
t−1 .0027**

EA
(2)
t−7 .0016* EA

(2)
t−7 .0017*

EA
(2)
t−21 -.0027** EA

(2)
t−21 -.0025**

constant 3.9997 constant 3.9734

α̂ .0082** α̂ .0081**

zt zt

mean .0000 mean .0000

std. err. 1.0014 std. err. 1.0014

TLB 43.5775 (0.32) TLB 43.5775 (0.32)

P/df 1.0268 P/df 1.0232

AIC 4017.670 AIC 4013.413

BIC 4078.161 BIC 4069.583

Notes: (*) indicates statistical significance on the 5%-, (**) on the 1%-level.

Table 7: Regression results for P2 (Negbin II models)

to one. Additionally, both information criteria are smaller than the ones for the

Poisson models, so all in all, the Negbin II specification is superior in modelling

the emergency arrivals for P2. Nevertheless, both specifications are used to con-

struct forecasts in the next step, because final evaluation is based on the model’s

predictive ability. For reasons of brevity, the equations for the forecasting mod-

els are not presented here, as they are for P1, because they contain too many

parameters.
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4.2.3 Priority 3

For P3, being the second largest group of emergency patients after P2, a sim-

ilar behaviour as for P2 can be hypothesised from graphical inspection of the

time series, autocorrelograms and comparison to count data distributions. The

time series seems to be autocorrelated to some extent, pointing towards weekly

cyclicality, Figure 4 suggests, that the Negbin II specification might fit the data

better than the Poisson specification. Performing a regression analysis for the

time series of P3 confirms this hypothesis (results in Table 7). Just as for P2, the

day of the week is identified as a strong predictor for EA
(3)
t with p-values virtually

equal to zero and using Monday and Tuesday as the reference now. So again,

there is a peak of arrivals at the beginning of the week, followed by a decrease

afterwards. DPH is no valid predictor for the time series of P3, instead, the coef-

ficient for DafPH is larger than it is for P2, indicating an increase in emergency

arrivals the day after a public holiday. Additionally, there is a sizeable positive

effect of DTEMPMAX30 on EA
(3)
t , which might be related to the aforementioned

swimming lakes in the area of the hospital. With regard to stochastic elements

affecting EA
(3)
t , the number of arrivals 1, 21 and 28 days ago could be identified,

all of them being highly significant and providing evidence of some weekly cycli-

cality in the emergency arrivals of P3. As before, these results were found for

both the Poisson and the Negbin II specification.

Another analogy between the results for P2 and P3 was found, when performing

diagnostic checks: As hypothesised from the inspection of Figure 4, the Negbin II

specification is more appropriate to model the time series of P3, than its Poisson

counterpart. While the regression residuals of both models reveal no remaining

dependence and have a mean close to zero, the residual variance in the Negbin

II case is closer to one. Furthermore, the corresponding information criteria

are considerably smaller than those for the Poisson model and - most striking -

comparing the ratio P/df of both models leads to 1.76 versus 1.02, so the Negbin

II specification provides a better fit. However, the same remark as before applies

concerning model evaluation: A final decision is made upon the predictive ability.

4.2.4 Priority 4

As a last step, the estimation step was performed for P4, which is in terms of

its size at best comparable to P1, with a median of only 2 emergency arrivals per

day. The autocorrelogram shows slight autocorrelation at lag 3 and 4, Figure 4

depicts the highly skewed distribution of P4 which seems to be fit best by the

negative binomial distribution. As shown in Table 8, regression analysis revealed

Monday, Wednesday and Thursday as predictors for the time series of P4, having

a positive impact compared to the rest of the week. An even stronger effect could

be identified for DPH and DafPH , which is negative for the former and positive
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Poisson model Negbin II model

EA
(3)
t

Coefficient EA
(3)
t

Coefficient

DWEDNESDAY -.0747* DWEDNESDAY -.0770*

DTHURSDAY -.0663* DTHURSDAY -.0673*

DFRIDAY -.1567** DFRIDAY -.1590**

DSATURDAY -.0721* DSATURDAY -.0724*

DSUNDAY -.1560** DSUNDAY -.1614**

DafPH .2751** DafPH .2777**

DTEMPMAX30 .1199* DTEMPMAX30 .1313**

EA
(3)
t−1 .0079** EA

(3)
t−1 .0079**

EA
(3)
t−21 .0036** EA

(3)
t−21 .0037**

EA
(3)
t−28 .0029** EA

(3)
t−28 .0028*

constant 3.0995 constant 3.0953

α̂ - α̂ .0216**

zt zt

mean -.0005 mean -.0003

std. err. 1.3163 std. err. .9998

TLB 45.1311 (0.27) TLB 44.6818 (0.28)

P/df 1.7648 P/df 1.0181

AIC 3910.232 AIC 3810.426

BIC 3957.621 BIC 3857.815

Notes: (*) indicates statistical significance on the 5%-, (**) on the 1%-level.

Table 8: Regression results for P3

for the latter predictor, respectively. Additionally, there is a negative effect on

EA
(4)
t in months defined as winter, that is October through December, so the

time series exhibits some seasonality. As predicted from the inspection of the

autocorrelogram, the lagged values EA
(4)
t−3 and EA

(4)
t−4 can also serve as a predictor

for the present number of emergency arrivals. Albeit yielding the same outcome

with regard to the size of the effects, fitting a Negbin II model once more leads

to better diagnostic results: The Pearson residual and the Pearson statistic have

the properties they should have in theory when the model is correctly specified,

which supports the observation made in Figure 4, that the negative binomial

distribution is closer to the distribution of EA
(4)
t .
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Poisson model Negbin II model

EA
(4)
t

Coefficient EA
(4)
t

Coefficient

DMONDAY .4616** DMONDAY .4585**

DWEDNESDAY .3766** DWEDNESDAY .3663**

DTHURSDAY .2686** DTHURSDAY .2576**

DPH -.7283** DPH -.7193**

DafPH .4898** DafPH .4827*

DWINTER -.2637** DWINTER -.2730**

EA
(4)
t−3 .0305* EA

(4)
t−3 .0299*

EA
(4)
t−4 .0309* EA

(4)
t−4 .0289*

constant .7190 constant .7317

α̂ - α̂ .2465**

zt zt

mean .0004 mean .0002

std. err. 1.3109 std. err. 1.0021

TLB 33.1480 (0.77) TLB 34.3368 (0.72)

P/df 1.7429 P/df 1.0185

AIC 2466.706 AIC 2369.566

BIC 2505.864 BIC 2408.724

Notes: (*) indicates statistical significance on the 5%-, (**) on the 1%-level.

Table 9: Regression results for P4
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4.3 The Forecast

After completing the step of model identification, estimation and in-sample

evaluation, the predictive ability of the models will be assessed in this paragraph.

This will be achieved in the following way: First, one- and seven-step ahead point

forecasts into the prediction sample will be constructed from each model. The

important point at this stage is, that a recursive forecasting environment is used

for this purpose. That means, that the models from above are only applied to

construct the first forecast and are re-estimated afterwards, using one additional

observation and therefore more information. The assumption underlying this

procedure is, that the parameters of the models are stable over time and do not

change after re-estimation due to structural breaks, which is reasonable for the

present application. Additionally, a quadratic loss function as presented above

will be assumed, both for mathematical convenience and for practical reasonabil-

ity. With regard to the information set, large parts of the identified models are

of deterministic nature and already known, when the forecast is constructed. For

the climatic variables, the actual value in the predicted period t + h is used to

construct the forecast, assuming perfect weather forecasts and given the fact, that

the influence of climatic variables in the models is rather small. Putting all these

pieces together, it is possible to construct a series of point forecasts and compare

them to the observed values in the prediction sample. This in turn yields a series

of forecast errors, which can be assessed by applying the MSE and the RMSE.

As already mentioned above, Poisson and Negbin II model yield the same point

forecast for a given set of regressors and lagged dependent variables, since their

conditional means are equally specified. As an extension of the point forecasts

obtained from the different models, one-step and seven-step ahead density fore-

casts will be constructed as well by using the series of point forecasts generated

before. At this point, Poisson and Negbin II models lead to different forecasts,

because their probability mass functions are specified differently. The density

forecasts are evaluated using the ASE afterwards.

4.3.1 Priority 1

The procedure of constructing and evaluating point forecasts is illustrated in

detail for the case of one-step ahead forecasts for P1 and should serve as an

example for all other cases, which involve considerably more parameters but

follow the same logic. Estimation led to a Poisson and a Negbin II model for P1,

where the conditional mean is specified as shown in (10). Thus, under a quadratic

loss function and applying the theory from chapter three, it is straightforward to
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construct the optimal one-step ahead forecast for P1 as

f∗t,1 = E[EA
(1)
t+1|It] = µP1

t+1|t

= exp(1.61 + 0.15 · 0 + 0.02 · 7− 0.02 · 5) = 5.21, (35)

where It = (DMONDAY , EA
(1)
t−1, EA

(1)
t−17) and et,1 = 12 − 5.21 = 6.79. Obvi-

ously, this is a poor result with a large forecast error which is due to the cause,

that only three predictors for P1 could be identified in total at the estimation

step, two of them being of stochastic nature. In order to generate a series of

forecast errors, above forecasting procedure was repeated for the entire predic-

tion sample. This resulted in a RMSE of 2.78 for the Poisson and the Negbin

II specification, respectively, since they rely on the same conditional mean. The

result indicates, that on average, the forecasts for P1 generated by the models

are wrong by 2.78 arrivals per day. Using the series of one-step ahead point fore-

casts, a series of one-step ahead density forecasts was constructed for the entire

prediction sample and for the Poisson as well as the Negbin II model. For the

former, this gives an
√
ASE of 0.0197, indicating, that on average, the forecast

densities differ by 1.97 p.p. for a single outcome from the true densities, if they

follow a Poisson distribution, which is reasonable to assume from Figure 4. For

the Negbin II model, comparing the forecast densities to the true density returns√
ASE = 0.0192 or an average difference of 1.92 p.p., which is slightly lower than

in the case of the Poisson model.

For the seven-step ahead forecast, ft,7, the forecasting procedure was slightly

changed, because in that case, EA
(1)
t−1, for instance, in fact means EA

(1)
t+7−1, which

needs to be predicted as well. For that purpose, a series of one-step ahead fore-

casts was generated to reach the seven-step ahead forecast in the end recursively,

Poisson model Negbin II model

AIC 2572.422 AIC 2565.019

BIC 2589.734 BIC 2582.331

One-step ahead forecasting performance

RMSE 2.78 RMSE 2.78
√
ASE 0.0197

√
ASE 0.0192

Seven-step ahead forecasting performance

RMSE 2.75 RMSE 2.75
√
ASE 0.0206

√
ASE 0.0201

Table 10: Model comparison for P1
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as explained in González-Rivera (2013, pp. 187). The outcome of this procedure

and the construction of a series of seven-step ahead forecast errors was a slightly

lower RMSE of 2.75 for both models. Afterwards, the series of point forecasts was

again used to construct the series of density forecasts, leading to
√
ASE = 0.0206

for the Poisson and
√
ASE = 0.0201 for the Negbin II model. Remarkably, both

values are only slightly higher than for the one-step ahead forecasts. This might

stem from the fact, that the seven-step ahead forecast corresponds to the same

day of the week as the day, when the forecast is constructed.

Considering slightly smaller information criteria and
√
ASE for the Negbin II

specification in Table 9, this model performs best in forecasting the time series

of emergency arrival counts in P1.

4.3.2 Priority 2

Turning the attention to P2, where many predictors could be identified at the

estimation step, one might hypothesise, that this time series is therefore more

predictable than it is the case for P1. Additionally, most of the parameters

in the models are of deterministic nature, which might increase the predictive

ability even further. Starting with the series of one-step ahead forecasts and the

respective forecast errors, this hypothesis can be confirmed. The Poisson models

lead to a RMSE of 9.48 and 9.50, both Negbin II models to RMSE= 9.49, which

is a lot better compared to the average daily arrivals of P2 than it is for P1.

Since the slight differences in the RMSEs are due to rounding, it is not possible

to discriminate between Poisson and Negbin II model 1 or 2 at this stage. The

time series of the one-step ahead forecasts (red line) for both Poisson models are

plotted in Figure 5 along with the observed emergency arrivals (green line) and

the corresponding 95%-confidence bands (grey area).
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Figure 5: Observed arrivals and one-step ahead forecasts P2
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Constructing density forecasts from the point forecasts yields an entire prob-

ability mass function for each element of the prediction sample. An example:

The one-step ahead forecast for t = 578 using the Poisson and Negbin II model

1 is ft,1 = 57.96 and ft,1 = 58.64 for model 2, respectively, the observed value

is EA
(2)
t+1 = 60. Plugging these values into the probability mass function of a

Poisson distribution returns three densities, two of them being a density forecast

ft,h(Yt+h|It) and one being the true density ft+h(yt+h|xt,yt+h−q) which are de-

picted in Figure 6 for illustrative purposes. On the abscissa, the number of emer-

gency arrivals is shown, the ordinate reports the corresponding density. Note,

that the discrete Poisson densities are again depicted continuously for reasons of

comparability.
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Figure 6: Poisson density forecasts for P2 (t=578)

Overall assessment of the density forecasts results in
√
ASE = 0.0109 for both

Poisson models and
√
ASE = 0.0108 for the first and

√
ASE = 0.0099 for the

second Negbin II model. Remarkably, all of the values are smaller than for the P1

density forecasts, which provides evidence for the hypothesis, that the P2 series

is more predictable.

Generating the series of seven-step ahead forecasts, the same observation as in

the case of P1 can be made, since the RMSE for all models slightly decreases. For

Poisson and Negbin II model 1, it is RMSE = 9.28, and for model 2, RMSE =

9.30. With regard to the density forecasts, there is a slight increase in the
√
ASE

for all models as shown in Table 10. Again, as for the one-step ahead forecasts,

the Negbin II model 2 performs best for the series of seven-step ahead density

forecasts. Additionally, this specification provided the best fit and the smallest

information criteria among all models for P2 and should therefore be preferred

to them when forecasting this time series.
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Poisson model 1 Poisson model 2

AIC 4060.688 AIC 4055.455

BIC 4121.178 BIC 4111.625

One-step ahead forecasting performance

RMSE 9.48 RMSE 9.50
√
ASE 0.0109

√
ASE 0.0109

Seven-step ahead forecasting performance

RMSE 9.28 RMSE 9.30
√
ASE 0.0110

√
ASE 0.0111

Negbin II model 1 Negbin II model 2

AIC 4017.67 AIC 4013.413

BIC 4078.161 BIC 4069.583

One-step ahead forecasting performance

RMSE 9.49 RMSE 9.49
√
ASE 0.0108

√
ASE 0.0099

Seven-step ahead forecasting performance

RMSE 9.28 RMSE 9.30
√
ASE 0.0111

√
ASE 0.0103

Table 11: Model comparison for P2

4.3.3 Priority 3

After illustrating the forecasting procedure and its results using various exam-

ples in the previous sections, the results for P3 and P4 are illustrated more briefly.

Adopting the hypothesis made concerning P2, one could assume that the time

series of P3 is also well predictable, since several predictors could be identified

at the estimation step. Additionally, both evidence from the diagnostic results

in Table 7 and Figure 4 suggest, that a Negbin II specification might be superior

to a Poisson specification in forecasting the emergency arrivals of P3. For the

series of one-step ahead forecasts, the models return a RMSE of 6.401, which

equals (6.401/33.94) · 100 = 18.86% of the time series’ mean. With regard to the

one-step ahead density forecasts, the Poisson model yields
√
ASE = 0.0112, the

Negbin II model
√
ASE = 0.0095, that is, it differs by 7 p.p. less from the true

density on average, which is in agreement with the hypothesis made above.

For the seven-step ahead forecasts, the situation is the same: The models

account for a RMSE of 6.1887, which is again less than for the one-step ahead

forecasts and for the forecast densities, the Poisson model yields
√
ASE = 0.0104
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and the Negbin II model
√
ASE = 0.0087, respectively. Summing up the results

in Table 11, the Negbin II specification turns out to be the best model to forecast

the time series of P3.

Poisson model Negbin II model

AIC 3910.232 AIC 3810.426

BIC 3957.621 BIC 3857.815

One-step ahead forecasting performance

RMSE 6.401 RMSE 6.401
√
ASE 0.0112

√
ASE 0.0095

Seven-step ahead forecasting performance

RMSE 6.1887 RMSE 6.1887
√
ASE 0.0104

√
ASE 0.0087

Table 12: Model comparison for P3

4.3.4 Priority 4

By continuing the line of argumentation, which was applied to the three previ-

ous priority groups, the time series of P4 should be less predictable than P2 and

P3 and a Negbin II specification might result in better predictive ability than a

Poisson model, because the distribution of P4 emergency arrivals is highly skewed.

In general, one might hypothesise that the results for P4 are therefore more similar

to P1, than to P2 and P3. And in fact, this is the case: For the series of one-step

ahead forecasts, the models show a RMSE of 2.4457, which is considerably less

than the RMSEs for P2 and P3, but accounts for (2.4457/2.84) · 100 = 86.12% of

the time series’ overall mean. This turns out to be a large deviation, indicating

poor predictability, even though strong deterministic predictors could be identi-

fied when estimating the models. This result might be partly caused by the fact,

that the underlying distribution of emergency arrivals is the most skewed among

all priority groups (see Table 1 and Figure 4), which implies a higher probability

mass in the tails of the distribution. This, however, is not taken into account

when computing the point forecasts, since they only represent future outcomes

of the conditional mean. One is inclined to infer, that the construction of density

forecasts is especially fruitful for this particular situation. And they lead to bet-

ter results, indeed: For the Poisson model, it is
√
ASE = 0.0189, for the Negbin

II model
√
ASE = 0.0131, indicating a deviation, which is comparable to the

size found for the other priority groups and providing evidence in favour of the

hypothesis, that a Negbin II specification might be preferable.

For the series of seven-step ahead forecasts, the situation does not change.

Again, both models yield a RMSE of 2.6072, which is huge compared to the time
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series mean, but lead to
√
ASE = 0.0199 for the Poisson, and

√
ASE = 0.0136

for the Negbin II model. The summary of in-sample and out-of-sample evaluation

criteria shows, that for P4, just as for all previous priority groups, the Negbin

II model serves best in forecasting the time series of emergency patient arrival

counts.

Poisson model Negbin II model

AIC 2466.706 AIC 2369.566

BIC 2505.864 BIC 2408.724

One-step ahead forecasting performance

RMSE 2.4457 RMSE 2.4457
√
ASE 0.0189

√
ASE 0.0131

Seven-step ahead forecasting performance

RMSE 2.6072 RMSE 2.4938
√
ASE 0.0199

√
ASE 0.0136

Table 13: Model comparison for P4
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5 Conclusion

The present paper made the attempt to forecast daily emergency patient arrival

counts classified by priority groups using appropriate statistical techniques. For

that purpose, regression models based on discrete probability distribution where

presented and applied to data from a German hospital. After estimating the

model parameters, they were used to construct point and density forecasts for

each priority group separately, both for one and for seven days ahead. This last

paragraph critically summarises what could be achieved and which parts remain

unsolved or beyond the scope of this examination.

From a statistical point of view, one important insight is, that the distributions

of emergency patient arrivals are indeed well approximated by discrete probabil-

ity distributions such as the Poisson and the negative binomial, which makes it

reasonable to depart from ARIMA modelling and to apply appropriate models

for count data. These models led to point forecasts, which are relatively sound,

at least for P2 and P3. Their main advantage, however, lies in the construction of

density forecasts, since both Poisson and Negbin II models yielded density fore-

casts close to the assumed true density and with better global performance than

the series of point forecasts. This is of particular importance in the presence of

skewed distributions, where reporting a future conditional mean as a point fore-

cast is even less meaningful than it is in the case of the normal distribution. A

further purely statistical result is the fact, that the Negbin II specification pro-

vides better diagnostic results after estimating the model and better forecasting

performance for all priority groups. This suggests, that forecasting the series of

emergency arrival counts should be performed using the Negbin II models.

With regard to the predictors, which could be identified when estimating the

different models, the results are in large part in agreement with already existing

results in the literature. This observation applies to the finding, that in general

the day of the week and the specific nature of a day are the strongest predictor for

the number of emergency arrivals. The typical behaviour with a peak on Mon-

days, followed by a decrease towards the weekend could be confirmed, at least

for some of the priority groups. A yearly seasonality could be identified as well,

being, however, less pronounced than the day of the week and contrary to Batal

et al. (2001) among others, who find a peak during the winter. Additionally,

the role of climatic factors influencing the number of emergency arrivals remains

ambiguous, as outlined in chapter two, since no distinct result could be identified.

Contrary to the research conducted by McCarthy et al. (2008), the different time

series revealed a pronounced dependence structure, both in the raw data and in

estimated autoregressive coefficients, which are statistically different from zero

in a significant way. This might be an indication of heterogeneity with regard to

the level of aggregation, since McCarthy et al. (2008) base their investigation on
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hourly data. Another indication of heterogeneity, which is in complete agreement

with the results obtained by Sun et al. (2009), is related to the different priority

groups. It is one main result of this investigation, that the groups differ remark-

ably in size, influencing factors and predictability. Most strikingly, small groups

like P1 and P4 turned out to be less predictable. For P1, the group of the highest

acuity, this is exactly the same result as presented by Sun et al. (2009). The

conclusion drawn from this finding is, that emergency arrivals should be forecast

separately, classified by severity of the illness or an appropriate proxy-variable,

as it was the case in this investigation.

Albeit finding several insightful results, it has to be stressed that they are

subject to various limitations: The dataset contains observations collected over

a period of less than two years, which challenges the assumption of temporal

stability of the model parameters. Some of the parameters moreover depend

on the explicit geographic location of the hospital providing the data, which

especially concerns the effects of climatic variables and seasonality. In addition,

emergency arrivals were aggregated on a daily basis and the hospital-specific

classification was used to discriminate among priority groups.

As pointed out in the introduction, this study is of some practical relevance,

since it might facilitate planning processes in hospitals and thus enhance effi-

ciency. Hence, it is the question, what the practical implications of the insights

illustrated above could be. First and foremost, the main implication is, that col-

lecting data is a valuable procedure, which is indispensable in order to develop

sophisticated forecasting models. From the results above, it becomes evident,

that this data should be as detailed as possible, because this uncovers inherent

heterogeneity and allows to forecast different patient groups separately, using the

Negbin II model as suggested above.

The issue of data and its collection is also one of the elements lying beyond the

scope of this single investigation. Obviously, the only factors used in the estima-

tion of the forecasting models were those already identified in the literature. One

further step would be, to include additional data on factors, which might drive

the number of emergency arrivals as well, such as demographic data or data on

public holidays which typically involve a higher consumption of alcohol. Other

promising extensions of this study exist with regard to statistical methods. Ad-

mittedly, the results of this paper rely on the most basic versions of count data

models, namely a Poisson and Negbin II dynamic regression model. The appli-

cation of more sophisticated versions of these models might lead to even higher

predictive ability. Another extension could be a more appropriate construction

of point forecasts following Freeland and McCabe (2004), who suggest computing

them using the conditional median rather than the conditional mean for discrete

distributions. Additionally, there exist more sophisticated methods for evaluating
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density forecasts as well, especially the method of the probability integral trans-

form developed by Diebold et al. (1998) which has been adjusted for the case of

discrete probability distributions by Liesenfeld et al. (2008). This method could

provide an assessment of density forecasts in greater detail.

To sum up the findings of this investigation, it can be said, that the combination

of count data models and density forecasts can provide a powerful tool for the

purpose of forecasting emergency patient arrival counts. Especially the more

flexible Negbin II specification performs well in producing one- and seven-step

ahead density forecasts. Since emergency arrivals are heterogeneous in many

regards, it is sensible to forecast them separately, classified by the severity of

their illness.
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A On the Interpretation of Regression Coefficients

Since the conditional mean of the Poisson and the Negbin II model is specified

in an exponential form, the interpretation of regression coefficients differs from

the standard interpretation, which applies to the linear regression model. This

non-standard interpretation is explained briefly using a simple example presented

in Winkelmann (2008, p. 70) and is also valid for the more complex specifications

used throughout study.

To calculate the effect of a certain regressor xj on the conditional mean E[yt|xj ],
one computes the partial derivative of the conditional mean with respect to the

regressor, which yields

∂E[yt|xj ]
∂xj

= exp(x′jβ)βj , j = 1, . . . , j (A.1)

and therefore depends on exp(x′jβ), which differs across observations. In order

to obtain a measure for a constant effect, one could instead consider the relative

change in the conditional mean, which is given by

∂E[yt|xj ]/E[yt|xj ]
∂xj

= βj . (A.2)

The interpretation of the regression coefficient is therefore the relative change

in the conditional mean due to a marginal change in the regressor.

A problem arises for models including dummy variables, since they cannot

change on the margin. As Winkelmann (2008, p. 71) points out, the relative

change due to variation in a dummy variable can be approximated using a linear

Taylor series expansion which is valid for small regression coefficients. The ap-

proximation returns βj as the relative change in the conditional mean due to a

change in a dummy variable.
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B Forecasting the Time Series of Overall Emergency Arrivals

Although it was the explicit aim of this paper, to model and forecast the differ-

ent priority groups separately, the same procedure was also applied to the overall

time series of emergency arrivals. The results are presented below, the estimation

results first, the model evaluation based on the predictive ability afterwards. The

overall time series is defined as P0, the emergency arrivals for a specific day are

denoted as EA
(0)
t .

Poisson model Negbin II model

EA
(0)
t

Coefficient EA
(0)
t

Coefficient

DMONDAY .1232728** DMONDAY .1236169**
DSUNDAY -.0504205** DSUNDAY -.0511887**
DafPH .2206338 ** DafPH .2200591**
DTEMPMAX20 .0621778** DTEMPMAX20 .0627979**

EA
(0)
t−1 .0019769** EA

(0)
t−1 .0019733**

EA
(0)
t−7 .0012886** EA

(0)
t−7 .0012801**

constant 4.20878 constant 4.209793

zt zt
mean -.0000643 mean -.0000494
std. err. 1.206154 std. err. 1.001857
TLB 45.7893 (0.24) TLB 36.3363 (0.64)

P/df 1.470311 P/df 1.014415
AIC 4478.952 AIC 4433.712
BIC 4509.371 BIC 4464.131

Notes: (*) indicates statistical significance on the 5%-, (**) on the 1%-level.

Table 14: Regression results for P0

Poisson model Negbin II model

AIC 4478.952 AIC 4433.712
BIC 4509.371 BIC 4464.131

One-step ahead forecasting performance
RMSE 11.47 RMSE 11.47√

¯ASE 0.0094
√

¯ASE err.

Seven-step ahead forecasting performance
RMSE 11.64 RMSE 11.64√

¯ASE 0.0097
√

¯ASE err.

Table 15: Model comparison for P0
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